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In this paper we present spectral algorithms for the solution of mesoscopic equa-
tions describing a broad class of pattern formation mechanisms, focusing on a pro-
totypical system of surface processes. These models are in principle stochastic inte-
grodifferential equations and are derived directly from microscopic lattice models,
containing detailed information on particle–particle interactions and particle dynam-
ics. The enhanced computational efficiency and accuracy of spectral methods versus
finite difference methods are also described.c© 2001 Academic Press

Key Words:spectral methods; mesoscopic models; Monte Carlo; interacting par-
ticle systems.

1. INTRODUCTION

Intermolecular forces dictate macroscopic properties of matter and are inherently related
to pattern formation in a number of phenomena exhibiting microphase separation, notably
polymer blends, alloys, catalysis, epitaxial growth of advanced materials, and biology. Ex-
act dynamic and equilibrium descriptions of these phenomena can be obtained by molecular
simulations, such as molecular dynamics and Monte Carlo algorithms, for a given inter-
molecular potential [1]. Despite their widespread use, these computational methods are
currently limited to short length and time scales, whereas morphological features seen in
experiments or device sizes often invoke much larger space and/or time length scales [2].
This disparity underscores the need to develop theories for larger scales [3], which take into
consideration microscopic details rather than relying only on phenomenology.

Recently, coarse-grained models of the master equation of Ising systems were developed,
when the Hamiltonian describes spin exchange, spin flip, or a combination of the two mech-
anisms [4–9]. Such theories have been termed mesoscopic and local mean field. Through
homogenization and asymptotics, the underlying macroscopic laws of interface velocity,
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surface tension, mobility, and critical nucleus size have also been derived [6, 11–13] and
shown to have a direct dependence on the interaction potential. Thus for the first time, a
direct rigorous analytical link of molecular interactions with macroscopic laws of trans-
port and thermodynamics has been established. This link obviously enables comparison
of experimentally measurable quantities to intermolecular forces as well as very efficient
evaluation of different interaction potentials.

The mesoscopic equations studied here are derived from first principles, i.e., from a
corresponding master equation describing the relevant microscopic processes, by a rigorous
coarse graining. An important feature of mesoscopic theories is that they are exact in the limit
that the interaction potential range becomes infinite without involving truncations or gradient
expansions, which is in contrast to the Cahn–Hilliard [14] (or Cahn–Hilliard–Cook) and
Allen–Cahn equations often employed to study phase separation of polymers [15–17]. While
the issue of an infinite range potential may appear to be too restrictive, a first comparison of
results from the mesoscopic theory with gradient Monte Carlo simulations under far from
equilibrium conditions indicates that only a relatively short-range potential is adequate
for quantitative agreement [9]. Moreover, asymptotics indicates that the deviation of the
solution of the mesoscopic theory from the infinite-range potential decays in an exponential
way, due to an underlying Large Deviation Principle, and decreases with the square root
of the problem dimensionality; as a result, mesoscopic theories for 2D and 3D lattices
require even shorter range interaction potentials [18]. Furthermore, underresolved small-
scale fluctuations and finite-range interaction effects can be systematically incorporated in
the mesoscopic models as stochastic corrections [9]. While further comparisons of Monte
Carlo and mesoscopic simulations are needed, the agreement observed thus far is extremely
encouraging and indicates that it may be possible to eventually replace intensive molecular
simulations with relatively inexpensive solvers of mesoscopic partial differential equations
(PDEs) for a large class of problems.

A major advantage of mesoscopic theories is their versatility. In particular, they can
employ various interaction potentials including combinations of attractive and repulsive
forces as well as anisotropic ones. Furthermore, various microscopic dynamics of diffusion
can be studied (e.g., Metropolis, Kawasaki, Arrhenius, etc.) and various microscopic pro-
cesses (e.g., diffusion coupled with adsorption, desorption, and reaction) can be exploited
systematically. For instance, mesoscopic theories can be applied to systems ranging from
nanoscale patterns in surface reaction adlayers on catalyst surfaces, to sintering of alloys,
to diffusion on crystal surfaces and through membranes [9, 19, 20]. Due to the fundamental
processes described by such theories (e.g., adsorption, desorption, reaction, and diffusion),
extension from model systems to realistic situations and application of mesoscopic theory
to additional research areas could be expected.

From the mathematical and numerical points of view, mesoscopic equations are stochas-
tic integrodifferential PDEs that describe processes of different time scales. Furthermore,
several phenomena, such as dynamics near bifurcation points and pattern evolution at late
stages and ripening, exhibit long relaxation times that often preclude simulations from
reaching equilibrium or steady state. This problem makes comparison with experiments
difficult. In addition, parametric studies and on-line control of mesoscale patterns demand
numerous such simulations, so computational cost becomes a crucial aspect in the suc-
cess of mesoscopic theories. One objective of this work is to exploit the application of
spectral methods to solving mesoscopic equations. Such methods are expected to effi-
ciently and accurately solve mesoscopic theories with or without noise. Problems involving
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long-range potentials such as electrostatics in ionic systems are expected to be solvable
with unprecedented efficiency since longer range potentials do not require any additional
computational effort for spectral methods. Furthermore, spectral methods can easily in-
corporate anisotropic potentials, nonlocal mobility terms, as well as convection–diffusion
terms. In fact, the convection–diffusion terms can even be treated exactly in many instances
through the use of appropriate integrating factors. A complete discussion of the advantages
of the spectral methods in comparison to finite difference schemes, which have usually
been employed until now in computational studies of mesoscopic models, is presented in
subsequent sections of this paper. Extensions of the methods presented in this paper on
stochastic mesoscopic equations will be presented in a follow-up publication.

The organization of this paper is as follows. In Section 2 we review mesoscopic theories
for surface processes. The derivation of mesoscopic models from microscopics as well
as the quantitative relation of microscopic and mesoscopic models to Ginzburg–Landau
theories, at least for attractive microscopic interactions, are discussed in Appendices A and
B, respectively. Numerical methods are discussed in Section 3, along with efficiency and
accuracy issues in a comparison of spectral techniques with finite difference methods. In
Section 4, scaling laws and asymptotic regimes are compared with numerical solutions.
Finally, Section 5 summarizes the paper.

2. MESOSCOPIC MODELS FOR SURFACE PROCESSES

While mesoscopic models such as the ones described here can appear in a number of
applications, in this paper we focus on processes occurring at fluid–solid interfaces such
as in catalysis, adhesive surfaces, and biological cells. Surface processes have traditionally
been modeled using continuum-type diffusion–reaction models [21], where the adsorptive
layer has been assumed to be spatially uniform (global mean field theory). This approach
either neglects particle interactions or treats them phenomenologically, while nonequi-
librium statistical mechanics theories provide an exact microscopic description; see for
instance [23] and [24]. The mathematical tools employed in the statistical mechanics models
are interacting particle systems (IPS), which are Markov processes set on a lattice such as the
Ising-type systems [25] describing the evolution of an order parameter at each lattice site.
In this section we review mesoscopic evolution equations arising in surface processes and
refer to Appendix A for a discussion on their derivation from corresponding microscopic
stochastic mechanisms.

2A. Adsorption/Desorption

The first mechanism we discuss is the desorption of microscopic particles from a surface
to the gas phase above and conversely the adsorption of a particle from the gas phase
to the surface as shown schematically in Fig. 1. At a microscopic level this process is
described by a spin flip in the order parameter; 1 is converted to 0 and vice versa under
suitable microscopic dynamics such as Metropolis-type and Arrhenius (see Appendix A).
For the former, the statistically averaged coverageu solves in a suitable asymptotic limit
the mesoscopic equation

ut = ψ(−β(J ∗ u+ h))[1− u− exp(−βh)u exp(−β J ∗ u)], (2.1)
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FIG. 1. (a) Schematic of surface atoms of a crystal (open spheres) and microscopic processes: Adsorption (A)
of an atom (dotted sphere) from the fluid phase, desorption (D) of the adsorbate back to the fluid, and migration (M)
of adsorbate along the surface. (b) One-dimensional cut of the potential energy surface describing species–crystal
interactions in the limit of zero concentration (Jm = Jd = 0). Species diffuse from minima of the potential energy
to adjacent sites by overcoming an energy barrier known as activation energy.

whereψ is associated with the microscopic spin flip rates,J is the interaction potential,u
is a coarse-grained variable that can be viewed as the probability density of the coverage,
β is the inverse temperature, andh denotes the external field. Similarly, for the Arrhenius
adsorption/desorption dynamics, we have the mesoscopic equation

ut = c0[1− u− exp(−βh)u exp(−β J ∗ u)], (2.2)

wherec0 is a rate constant.
Next we review some basic properties of (2.1) and (2.2). First, both equations are equipped

with a comparison principle, at least whenJ ≥ 0. Steady state solutions of either equation
satisfy the algebraic equation

f (x) := α(1− x)− xe−λx = 0, (2.3)

whereα = exp(βh) andλ = J0β, J0 =
∫

J(r ) dr . Figure 2 shows schematically the phase
diagram as a function of the external fieldα, and the interaction parameterλ. Outside
the cuspy envelope, intermolecular forces are either weak or very strong resulting in a
single-valued isotherm corresponding to the single root of (2.3). Region I corresponds to
a dilute phase, Region III to a dense phase. Within the cuspy envelope (Region II), both
phases may exist. In this case (2.3) has three solutions,m− = m−(α, λ) < m0 = m0(α, λ) <

m+ = m+(α, λ), wherem+ andm− correspond to the dense and the dilute phases of the
system, respectively. The dynamics of cluster growth within Region II depends on the
relative parameter location with respect to thestationary coexistencecurve (the dotted line
in Fig. 2), given byα = e−λ/2. In this last case the roots of (2.3) becomem0 = 1

2 and
m± = 1

2 ± ν, for some 0< ν < 1
2.
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FIG. 2. Phase diagram for the system in (2.1) and (2.2). Within the cusp (Region II), the system is bistable
and thus may have regions that are dilute while other regions are dense; outside this cusp, the system tends to be
either dilute or dense. The line of stationary coexistence is the dotted line within Region II.

Standing and travelling waves for (2.1) and (2.2) play an important role in the long
space/time asymptotics of mesoscopic equations [6, 13], since they connect high and low
density phases, across a cluster boundary. The rigorous existence, uniqueness, and stability
of such solutions follows from the analysis in [34], which covers a broad class of integrodif-
ferential equations that admit a comparison principle. Other related works include [35, 36].
Note that for even potentials which are not necessarily radial we obtain direction-dependent
standing and travelling waves [6].

2B. Surface Diffusion

The second mechanism we discuss is the diffusion of particles on a surface, as shown in
Fig. 1. At the microscopic level this process is described by a spin exchange between the
neighboring sitesx andy, i.e., a spontaneous exchange of the values of the order parameter
at x and y. The microscopic dynamics dictate the rates of the spin exchange, and typical
examples are the Metropolis-type and Arrhenius dynamics. The mesoscopic model for
Metropolis-type dynamics is [8]

ut − D∇ · [∇u− βu(1− u)∇ J ∗ u] = 0, (2.4)

whereD = ψ(0) andψ is again associated to the spin exchange rates. For the Arrhenius
diffusion mechanism we obtain the mesoscopic equation [9]

ut − D∇ · {exp(−β J ∗ u)[∇u− βu(1− u)∇ J ∗ u]} = 0, (2.5)

whereD = exp(−βU0). In both equations we assumed a zero external fieldh. If there is a
nontrivial external field, then by introducing the free energy

E[u] = −1

2

∫ ∫
J(r − r ′)u(r )u(r ′) dr dr ′ +

∫
1

β
[u ln u+ (1− u) ln(1− u)] dr,

(2.6)
(2.4) and (2.5) can both be written as the constrained gradient flow

ut −∇ ·
{

µ[u]∇
(

δE[u]

δu
+ h

)}
= 0. (2.7)
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In the case of (2.4) the mobility termµ[u] is µ[u] = Dβu(1− u), while in the Arrhenius
case (2.5) it is a nonlocal function given byµ[u]Dβu(1− u) exp(−β J ∗ u). Note that in
both equations the coverageu satisfies 0≤ u ≤ 1 due to the presence of the termu(1− u)

in the mobilities, which enforces the exclusion principle (i.e., at most one particle per lattice
site) and consequently the monolayer structure at the mesoscopic level.

Equations (2.4) and (2.5) include two competing forces: a Fickian diffusion term which
competes with an uphill diffusion due to the attractive potnetialJ ≥ 0. We expect that
when the parameterβ is large, the particles will tend to organize in clusters, overcoming
the Fickian diffusive effects. These heuristics become clearer with the use of a linearization
argument around a constant coverageu0, which yields a regime ofspinodal decomposition.
Indeed, we consider a solutionu = u0+ ε exp(ωt + i ξ · x) of (2.4), for instance, where
u0 is a constant state andε ¿ 1. The linearization of the equation aroundu0 yields the
dispersion relation

ω = −|ξ |2[1− βu0(1− u0) Ĵ(ξ)], (2.8)

whereJ0 =
∫

J(r ) dr and Ĵ denotes the Fourier transform ofJ. For example, the Fourier
transform of the potential used as our example in this paper,J(r ) = (1/

√
2πr 2

0)

exp(−|r |2/2r 2
0), is Ĵ(ξ) = exp(−r 2

0 |ξ |2/2). Thus, suitableβ, u0, and ξ ’s give rise to a
positive eigenvalueω and subsequent exponential growth of the coverageu (eventually
controlled by the exclusion principle), which leads to the formation of clusters.

2C. Mesoscopic Theories for Multiple Micromechanisms

Typically, multiple surface processes take place simultaneously, and one of the practical
advantages of the mesoscopic theories is that they can be easily modified, combining the
various spin flip/exchange mechanisms described earlier. Here we present a straightfor-
ward generalization of the mesoscopic theory developed in [7] (see also [13]). We consider
Arrhenius adsorption/desorption dynamics, Metropolis surface diffusion, and a simple uni-
molecular reaction; the corresponding mesoscopic local mean field equation is

ut − D∇ · [∇u− βu(1− u)∇ Jm ∗ u] − [ka p(1− u)− kdu exp(−β Jd ∗ u)] + kr u = 0.

(2.9)
Here Jd and Jm are the intermolecular potentials for surface desorption and migration.
Furthermore,D is the diffusion constant;kr , kd andka denote, respectively, the reaction,
desorption, and adsorption constants; andp is the partial pressure of the gaseous species
(kd, ka, andp are algebraically related to the parametersc0 andh in (2.2)). Finally,u denotes
the surface coverage of the adsorbed species.

The Fickian diffusion case is an interesting extreme (Jm = 0) typically adopted in
diffusion–reaction models at the continuum and microscopic levels [22, 24, 37].

ut − D∇u− [ka p(1− u)− kdu exp(−β Jd ∗ u)] + kr u = 0. (2.10)

The steady states of Eqs. (2.9) and (2.10) are the same as those of Eqs. (2.1) and (2.2), and
thus the phase diagram in Fig. 2 also holds here withα = ka p

kd
andλ = J0β. WhenJd = Jm

andkr = 0, (2.1), (2.2), and (2.9) also share the same standing wave. However, there are
no general rigorous results available on the existence of travelling waves for (2.9); some
numerical simulations for identical interaction potentialsJm = Jd = J were carried out in
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[7], indicating the existence of nonmonotone travelling waves. Finally, it is easy to see that
the free energyE[u] is a Lyapunov functional for (2.9).

Clearly we can also consider variants of (2.9) with Arrhenius diffusion dynamics. Fur-
thermore, it is possible to include fluctuations in the mesoscopic equations we discussed,
derived directly from each of the micromechanisms, and satisfying fluctuation–dissipation
relations [7, 9]; see also Appendix A. The role of fluctuations is critical, for instance, in
nucleation and spinodal decomposition, and we extend the spectral methods presented here
to stochastic mesoscopic equations in [D. Horntrop, M. Katsoulakis, and D. Vlachos, in
preparation].

2D. Macroscopic Limits and Interface Dynamics

Some aspects of the complex relations between the above micro-, meso-, and macro-
scopic models were explored in [5–7, 9, 11, 13, 26, 27] (and references therein), where
the authors have derived macroscopic PDEs, describing evolving clusters formed under
the influence of attractive microscopic interactions. We also refer to the review article [33]
for many other related references. In [6] it was shown that stochastic Ising models with
spin flip dynamics yield evolving clusters moving with normal velocity which is a (pos-
sibly anisotropic) function of the principal curvatures of their boundaries. This function
is actually described by a Kubo–Green-type formula which also specifies the relationship
between the mobility and the surface energy of the propagating cluster boundaries on one
hand, and the microscopic interaction potential and microscopic dynamics of the Ising
model on the other. All these results are valid globally in time, the motion of the interface
being interpreted in the viscosity sense after the onset of the geometric singularities. In [13]
similar results were obtained for Eqs. (2.9) and (2.10), when multiple surface mechanisms
coexist and interact. Finally, in [11] it was formally shown that the Kawasaki/Metropolis
dynamics with isotropic potentials give rise to a Mullins–Sekerka free boundary problem
with surface tension identified through the microscopic Hamiltonian. This last result was
rigorously established for smooth Mullins–Sekerka flows in [E. Carlen, M. Carvalho, and
E. Orlandi, in preparation]. We revisit some of these results in Section 4, where we compare
them to our simulations.

3. NUMERICAL SCHEMES

Given the highly nonlinear nature of the mesoscopic model equation in (2.9), it is natural
to use numerical methods in order to study such an equation. In light of the wide variety of
physically relevant problems that can be described by (2.9), it is important that the numerical
scheme be efficient and highly accurate. In particular, we are interested in numerical schemes
which will allow for longer time evolutions involving greater length scales than are possible
with Monte Carlo simulations while incorporating molecular effects that are not considered
by macroscopic, phenomenological models.

The two main steps in devising a numerical scheme for (2.9) are the determination of the
technique used to calculate the convolutions and the method for numerically solving the
differential equation once the appropriate convolutions have been computed. Two natural
approaches to these steps would be related to finite difference or lattice-based methods
and spectral methods. While finite difference methods have been previously applied to
mesoscopic models by two of the authors [13] as well as others [7, 20], we are unaware of
the prior application of spectral methods in this context, though such methods have been
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applied to a phenomenological model equation for 2D turbulence that has some features in
common with our mesoscopic model [41], and a hybrid method has been applied in a study
of the Ginzburg–Landau equations [52, 53]. We briefly describe each of these approaches
in turn below and make performance comparisons at the end of this section.

3A. Finite Difference Methods

The basis of finite difference methods is the discretization of the physical domain into a
lattice or array of points at which the solution of the problem is computed. The lattice points
are chosen here to be equally spaced with spacing1x and1y. The first task in applying
a finite difference method to (2.9) is to determine a means of calculating the value of the
convolution integrals at each lattice site. One such approach would be to use a traditional nu-
merical integration technique such as the trapezoid rule. However, it is well known (see [42],
for example) that numerical integration of multiple integrals is much less efficient than that
of single integrals; thus, the calculation of the convolutions needed at every node point for
each time step will prove to be a computational bottleneck, unless more sophisticated tech-
niques are employed. In the following paragraphs, we briefly describe some approaches used
in the literature to reduce the computational time needed to calculate such convolutions.
We also discuss why these approaches, while certainly an improvement of the standard
quadrature technique, are still limited in applicability.

One set of such methods takes advantage of properties of the migration and desorption
potentialsJm and Jd to simplify the calculation. For instance, for rapidly decaying poten-
tials, i.e., potentials with relatively short correlation ranges, it is possible to calculate the
convolution integral using only those grid points located within a small circle of the point
about which the convolution is being computed, since the integrand is essentially zero be-
yond this circle. The radius of this circle is typically referred to as the cutoff distance of the
potentials. Lists of neighbors can be maintained to speed up the calculation of the convolu-
tion [1] at the expense of larger memory requirements. Of course, while the determination
of the neighbors of each point does require some initial computational time, the amount of
computational time required for each time step is greatly reduced for potentials with short-
range correlations. However, the storage requirements rapidly become quite large when
large neighborhoods are required for accuracy, in complete analogy to molecular dynamics
and Monte Carlo simulations.

Another physical space approach that could be taken in the calculation of the convolution
integrals is to use a Gaussian quadrature technique. The main disadvantage of such an
approach is that the integration nodes do not correspond with the lattice sites, thus inducing
an interpolation error in determining the function values away from the lattice sites. An
approach similar to Gaussian quadrature, which, in contrast, requires equispaced integration
nodes, has been used in [43] to calculate convolution integrals with Gaussian potentials with
a localized formula which is well suited for parallel computations. The greatest drawback
to this technique is the specificity to Gaussian potentials; if other (possibly anisotropic)
potentials were to be considered, the quadrature formula would have to be rederived and
could even require a more complicated, less localized form.

The other main step in creating a finite difference scheme for (2.9) is making an appro-
priate discrete approximation to the underlying PDE. Since (2.9) is nonlinear and parabolic,
it is reasonable to consider an explicit method which replaces the spatial derivatives with
centered difference formulas and the temporal derivative with a forward difference [44, 45].
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Thus, neglecting any errors in the calculation of the convolutions, such a method would
have order 1 accuracy in time and order 2 accuracy in space.

Another important issue in the use of finite difference methods is the choice of time
step1t relative to the mesh spacing1x and1y to ensure the numerical stability of the
algorithm. While it is possible to determine an explicit stability criterion for the linearized
version of (2.9), with the convolutions replaced by the asymptotic expansion in (B.1), such
a formula is quite complicated and is effectively a modification of the standard stability
criterion for the heat equation:D1t

(1x)2 + D1t
(1y)2 ≤ 1

2 [44, 45]. Thus, in addition to the large
number of computations needed at every time step just to compute the convolutions, a very
small time step is necessary for numerical stability.

3B. Spectral Methods

Spectral methods are a class of numerical schemes that take advantage of many properties
of Fourier transforms, especially the fact that differentiation in physical space corresponds
to a multiplication in Fourier space. The computational efficiency of a spectral method
relies upon the existence of the fast Fourier transform (FFT) to pass between physical space
and Fourier space [46, 47]. We take the Fourier transform of (2.9) in spatial variables and
thereby reduce the very complicated PDE (2.9) to a first-order nonlinear ordinary differential
equation (ODE),

ût = (−ka p− kr − 4π2D|ξ |2)û+ F̂(u), (3.1)

whereξ is the Fourier space variable and̂F(u) is the spatial Fourier transform of

F(u) = ka p− Dβ∇ · (u(1− u)∇ Jm ∗ u)− kdu exp(−β Jd ∗ u). (3.2)

The numerical calculation of̂F(u) proceeds in a rather straightforward manner through the
use of FFTs and the fact that convolutions are merely products in Fourier space. For instance,
the Fourier space representation of the last term in (3.2) can be numerically computed by
multiplying Ĵd andû, transforming back to physical space for exponentiating and multi-
plying by u, and finally transforming back to Fourier space. Therefore, the computational
problem reduces to the solution of a first order nonlinear ordinary differential equation with
a forcing function which can be calculated rather efficiently at every point of the lattice for
every time step. The accuracy of the calculation of the forcing function will also be rather
high given the exponential accuracy of spectral methods.

Thus, we wish to select an ODE solver that is straightforward to implement for nonlinear
equations, has a high level of accuracy, and has good stability properties. Given the rela-
tive ease of use of explicit methods for nonlinear equations, we selected the second order
accurate Heun’s method to solve the resulting ODE in (3.1). Heun’s method uses an Euler
predictor and a trapezoidal corrector and, as would be expected of any explicit method,
has potentially strict time step requirements for numerical stability. The stability analysis
of this method applied to (3.1) with F linearized and convolutions replaced by (B.1 (see
Appendix B)) indicates that the nonlinear terms tend to lessen the severity of the time step
restriction imposed by the displayed linear term in (3.1) for some parameter regimes; how-
ever, in general, it is prudent to use the stricter limitation(ka p+ kr + 4π2D|ξ |2)1t ≤ 2.
Note that since the largest possible value of|ξ |2 is essentially 1

(1x)2 + 1
(1y)2 this time step

restriction is basically as severe as required by the finite difference method. Thus, this most
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straightforward spectral approach would result in a potential increase in computational
speed and improved accuracy only in the calculation of the nonlinear terms at each time
step as compared with the finite difference approach. Of course, in both approaches the
time step restriction could be greatly reduced or even eliminated through the use of an
implicit method; the major difficulty in using such an integrator would be the rather high
computational cost of solving nonlinear equations at each time step.

However, since the severity of the time step restriction is predominately caused by the
presence of the term multiplyinĝu in (3.1), the elimination of this term should allow for
the use of much longer time steps. The use of the integrating factor

ρ(t) = exp[(ka p+ kr + 4π2D|ξ |2)t ] (3.3)

exactly treats this term and thereby allows the use of a larger time step while still avoiding
numerical instabilities [46]. In detail, we multiply Eq. (3.1) by the integrating factor and
obtain

(ρ(t)û)t = ρ(t)F̂(u). (3.4)

The application of Heun’s method to the ODE (3.4) gives

ˆ̃u(tn+1) = ρ(−1t)(û(tn)+1t F̂(u)(tn)),

û(tn+1) = ρ(−1t)û(tn)+ 1t

2
[ρ(−1t)F̂(u)(tn)+ F̂(ũ)(tn+1)]. (3.5)

The formula in (3.5) demonstrates the explicit and exact calculation of the linear terms; it
also shows the damping at the largest wave numbers that would be expected by a diffusion
term as indicated by the dispersion relationship in (2.8).

In careful numerical studies, we have observed no significant loss of accuracy in many
situations by when we used a time step that is one order of magnitude larger than would be
required if we had not used the integrating factor. However, in situations where large wave
number effects are important, the use of a large time step tends to prevent the formation
of small-scale structures at short times; such behavior is reasonable as can been seen by
considering the integrating factor in (3.3) and the discretized scheme in (3.5). (For largeξ and
1t , the quantityρ(−1t) is quite small.) While this suppression of small-scale perturbations
at short times does not necessarily change quantitative features of the results at later times,
such as the statistical measures of the size of the typical length scale discussed in Section 4,
the concentration configurations will typically appear to be qualitatively different even with
the same initial data. Another situation in which it would be potentially inadvisable to take
significantly larger time steps than allowed by the standard stability analysis for a spectral
method without the integrating factor is when the balance between the migration term and the
standard diffusion term is rather sensitive to perturbation. The stabilizing scheme proposed
in [54] could potentially be applied here to resolve the inherent stiffness in the problem for
long time calculations. All results given in this paper have been carefully validated to insure
that an appropriate time step has been used. In the remainder of this paper, the term spectral
method refers to use of the spectral method in conjunction with an integrating factor.

It is important to point out that it is possible to make the time steps in physical space
rather than Fourier space in a spectral-based approach; however, for the model being studied
here, there is no particular advantage to doing so since bothu andû are needed at every
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time step. Another noteworthy point is that the spectral method as described above assumes
periodic boundary conditions; the use of Chebyshev polynomials allows the use of other
types of boundary conditions [46, 47].

3C. Comparison of Numerical Schemes

We now compare the computational performance of the finite difference scheme and the
spectral scheme described above. For the purposes of this comparison, we assume that the
system is nonreactive(kr = 0) and that there is no surface diffusion(D = 0); thus, (2.9)
reduces to

ut − [ka p(1− u)− kdu exp(−β Jd ∗ u)] = 0. (3.6)

This case is attractive for computational comparisons for several reasons. This problem
contains the main features of the complete model including the appearance of convolution
in a nonlinear term as well as the possibility of spinodal decomposition; (see Section 2).
The removal of the Fickian diffusion eliminates the obvious advantage in time step size
1t of the spectral method due to the use of the integrating factor and allows for a direct
comparison of the accuracy and speed of the convolution calculation in an environment that
is similar to that of the complete model (2.9).

For the purposes of this comparison, the finite difference scheme implements the calcula-
tion of the convolutions using the “neighborhood” technique described earlier. The effect of
the size of the neighborhood on computational speed and accuracy is certainly an important
aspect of our comparisons below. For the spectral scheme, we use the Euler method rather
than Heun’s method so that comparisons are being made between methods which are both
order 1 in time. The desorption potential is a Gaussian given by

Jd(r ) = 1√
2πr 2

0

exp

(−|r |2
2r 2

0

)
. (3.7)

All physical parameters are selected to be the same in both cases:ka = 1, p = 1, kd =
20, β = 5.7, andr0 = .02. The computational parameters are the same as well:1x =
1y = 1

128 = 1
N and1t = .001. Comparisons are made after 500 time steps from an initial

configuration in whichu is 1 inside a circle of radius16 and exponentially decays rapidly to
0 outside the circle.

The timing of the codes was completed on an SGI Octane workstation with an R10000
processor and is given in Table I with execution times rounded to the nearest second. The
` given for the finite difference results refers to the radial distance in terms of number of
neighbors from the point about which the convolutions are being computed. For instance,
` = 3 means that all lattice points within a circle of radius 31x are used in the calculation of
the convolution. As can be seen from Table I, even the` = 3 neighbor finite difference code
required four times as long to complete as did the spectral code; the difference became much
more pronounced as̀ increased. These timing results also agree with the estimates that
would be obtained by considering operation counts for the calculation of the convolution
since that is the most computationally demanding part of either code. For the spectral code,
the calculation of the FFTs needed for the convolution takesO(N2 log(N)) and is the
dominant factor in the computation time since the actual convolution itself is onlyO(N2).
On the other hand, the finite difference code must calculateN2 convolutions, each with
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TABLE I

Comparison of the Computation

Times for the Solution of (3.6) Using

Various Techniques

Technique Time

Spectral 1:50

Finite difference,̀ = 3 7:33
Finite difference,̀ = 4 13:03
Finite difference,̀ = 5 21:36
Finite difference,̀ = 6 30:24
Finite difference,̀ = 7 40:44

Note. The time is given in terms of min-
utes:seconds and is rounded to the nearest
second.

O(`2) neighbors, and is thus roughlyO(N2`2). The appropriateness of this quantity to
describe the computational time of the finite difference scheme can be seen by considering
Table I; doubling̀ from 3 to 6 required almost exactly four times more computational time,
as predicted.

However, in order to get a complete picture for comparison, it is also important to consider
the relative accuracy of the results. Given that, for the choice ofr0 and1x used here,̀ = 5
would encompass roughly two standard deviations for the potential, it is not surprising
that the results for̀ < 5 were quite different than the spectral results. On the other hand,
for ` = 6 the difference between the finite difference results and the spectral results was
of order 10−3 for a typical lattice site; for̀ = 7, the difference was only of order 10−4.
Thus, referring to Table I we see that the finite difference approach requires more than an
order of magnitude additional computational time in order to achieve results comparable
to those of the spectral method. Even for much smaller values ofr0 (much shorter range
potentials) and thus smaller necessary values of`, there would still be a noticeable difference
in computational time required; on the other hand, potentials with longer range correlations
(largerr0) would require much larger̀for accuracy, making finite differences with standard
quadratures for convolutions impractical.

Similar timing and accuracy considerations also hold for the model withD 6= 0. However,
the fact that the spectral method with the integrating factor is still numerically stable with
a time step one to two orders of magnitude larger than can be used in a finite difference
scheme means that the spectral approach gives a two to three orders of magnitude reduction
in computation time as compared with a finite difference scheme.

While it is possible to combine the two main approaches described above (e.g., con-
volve with a spectral method and then use finite difference on the underlying model
equation), such a scheme should not provide any advantages over a purely spectral ap-
proach. Such an approach has been used in the literature in a study of the time-dependent
Ginzburg–Landau equation [52, 53]. Certainly the computation time for finite differences
would be reduced by having a faster means of calculating the convolutions; however, the
potential speed-up resulting from the larger time steps that are possible by treating the
equation spectrally with the integrating factor is completely lost in such a combination of
approaches.
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In the next section, we make comparisons with asymptotically predicted behaviors to
further support the validity of our results. Given the clear computational advantage of the
spectral method, we use it exclusively in the remainder of this paper.

4. SCALING AND GROWTH LAWS

In order to further validate the results obtained from the spectral simulations, we now
describe some comparisons with various well known and widely accepted scaling and
growth laws. The first of these comparisons is for the same model (3.6) that was considered in
the timing comparisons in the previous section. For that model, Fig. 2 describes the behavior
of the system for various combinations of system parameters. Near the line of stationary
coexistence (the dotted line of Fig. 2), the normal velocity of the cluster boundaries is given
by V = −µσκ, whereµ is the mobility,σ is the surface tension, andκ is the curvature. Both
the mobility and the surface tension can be given by Kubo–Green formulas, as shown in
[13]. Thus, on the line of stationary coexistence, the rate of decay of the size of the fieldR is
directly proportional to the curvature and inversely proportional to the size of the field, i.e.,

d R

dt
∼ − 1

R
. (4.1)

A solution of this equation is of the form

R(t) = √c1− c2t . (4.2)

Away from the line of stationary coexistence, the curvature effects are of lower order and
the rate of change of the size of the system is directly proportional to the travelling wave
speed; thus,R should be a growing linear function oft above the stationary coexistence
curve and a decaying linear function below the stationary coexistence curve.

In order to try to observe these behaviors in our computer simulations, we initialized the
concentration field with a circle centered at the origin within which the concentration is 1;
outside this circle, the concentration exponentially decayed to 0. The physical parameters
chosen here areka = 1, p = 1, kd = 20, andr0 = .01. Note that these physical parameters
correspond toα = ka p

kd
= .05 andλ = J0β = β in the phase diagram in Fig. 2 sinceJ0 =∫

Jd(r )dr = 1 for the potential in (3.7) regardless of the choice ofr0. The computational
domain is a box with sides of length 1 with periodic boundary conditions. A 128× 128
lattice is selected, making1x = 1y = 1

128, while the time step is1t = .02. Figure 3
shows the behavior of the radius of the circle as time evolved; for each curve, the dots
represent the simulated radius while the solid lines are the least squares fits of the data to
the appropriate curves. The top curve in Fig. 3 is the radius of the circle for the valueβ = 6.5
which is above the line of stationary coexistence; the linear growth that was theoretically
predicted is quite visible. Likewise, the linear decay that was predicted to occur below
the stationary coexistence curve can be seen in the lowest curve in Fig. 3, which depicts
the radius forβ = 5.7. The middle curve is forβ = 6.0, which is very near the stationary
coexistence curve; the fit of the data to the predicted form of the solution in (4.2) is quite
close. Note as well that the change in the radius occurred on a much slower time scale when
in the parameter regime near the line of stationary coexistence, as predicted by asymptotic
arguments in [13].
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FIG. 3. Behavior of the radius of a circular patch of high concentration centered at the origin for various
choices ofβ. The dots represent computed values while the solid lines represent least squares fits to appropriate
functions. The top curve (β = 6.5) shows the linear growth predicted forβ above the line of stationary coexistence;
the middle curve (β = 6.0) agrees with the prediction in (4.2) for parameter regimes near the line of stationary
coexistence; the bottom curve (β = 5.7) shows the linear decay predicted forβ below the line of stationary
coexistence.

It is also interesting to explore what happens to the above model when surface diffusion
is present in the system, i.e.,D 6= 0. In this case, the mesoscopic model equation takes the
form

ut − D∇ · [∇u− βu(1− u)∇ Jm ∗ u] − [ka p(1− u)− kdu exp(−β Jd ∗ u)] = 0. (4.3)

Since there is no comparison principle for this model, it is not possible to rigorously derive
results here that are similar to those obtained for the earlier model (3.6) using viscosity solu-
tion techniques. However, for small values of the diffusion constantD, the same asymptotic
arguments do hold formally and thus we would expect to observe behavior similar to that ob-
served for the model in (3.6) [13]. Here we consider a system near the stationary coexistence
curve (β = 6.0) with the other physical parameters unchanged but with a slightly smaller
time step1t = .01. We selectJm = Jd and initial data of the same form as before. Figure 4
contains a plot of the radius of the circle as a function of time forD = 10−3, 10−4, 10−5,
and 0 going from left to right. The dots are the actual radius from the computer run while
the solid lines are the least squares fits of the data to curves of the form of (4.2). Thus we see
that curvature effects still determine the decay of the system for small diffusion constants,
though it is clear that the diffusion mechanism will come to dominate the results for larger
diffusion constants.

An additional physical situation relating to the model in (4.3) that we explore numerically
is the merger of clusters of high concentration when the diffusion constantD is small com-
pared to the adsorption/desorption constants. In the parameter regime above the stationary
coexistence line, circular patches that are initially large enough relative to the correlation
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FIG. 4. The effect of diffusion on the decay of the radius of a circular patch of high concentration centered at
the origin in a parameter regime near the line of stationary coexistence. From left to right, the curves are for the
diffusion constantsD = 10−3, 10−4, 10−5, and 0. In all cases, the radius decayed as predicted by (4.2); however,
this formal asymptotic prediction will not hold for large values ofD.

lengthr0 of the migration and desorption potentials such that the circular regions persist and
grow in time would eventually meet at a single point, thereby creating a singularity beyond
which asymptotic arguments could only hold formally. Past this initial meeting, formally one
would expect the boundary to have a pair of cusp-like structures until the merger is complete.
The sharpness of these cusps should be greater in parameter regimes further from the station-
ary coexistence line for the following two reasons: (1) Curvature effects start becoming more
important when the parameters are near the stationary coexistence curve because the effect of
curvature on the velocity of the boundary is no longer negligible when compared to the trav-
elling wave speed, i.e., the enhanced velocity of the boundary at high curvature locations will
tend to smooth the boundary; (2) the travelling wave transition front between high concen-
tration and low concentration tends to be much steeper away from the stationary coexistence
curve.

Figure 5 contains computational results which confirm the behavior described in the
preceding paragraph. These computations used the same parameters used for Fig. 4 with
the additional choiceD = 10−4. The initial data consisted of a pair of circles centered
on the x-axis at x = ±.15; the concentration field was set to be 1 inside these circles
and exponentially decayed to 0 outside the circles. The plots in Fig. 5 are contour plots
of the concentration function with lighter shading representing higher concentrations; the
displayed contours represent concentrations of .1, .5, and .9. We consider the circles to have
merged when the contours corresponding to a concentration of .5 have touched. The top two
plots in Fig. 5 are forβ = 6.1, which is relatively close to the stationary coexistence curve
(β ≈ 6 for our choice ofkd, ka, and p) so that the curvature effects should be important;
on the other hand, the bottom two plots in Fig. 5 are forβ = 7, which is much further from
the stationary coexistence line, making curvature effects negligible. The left-hand plots on
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FIG. 5. Contour plots showing the effect ofβ on growing and merging circular patches of high concentration
in parameter regimes above the line of stationary coexistence (β ≈ 6 for our parameter choices). The top two plots
are forβ = 6.1, while the lower two plots are forβ = 7.0. The left-hand plots are for a time just after the circles
have begun to merge; the right-hand plots are for a comparable later time. The top plots show the smoothing of
corners that would be expected in parameter regimes close to the statrionary coexistence curve; the lower plots
have much sharper points on the boundary.

each row depict the system just after the circles have begun to merge, while the right-hand
plots correspond to comparable later times. Even just after the merger, the tendency of the
curvature effects to smooth the boundary are already observable; at the later times depicted
in the right-hand plots, the smoothing of the interface where the two circles are merging
is quite noticeable. Thus, our computations are in agreement with the formal asymptotic
predictions.

We now consider the mesoscopic model equation for the Kawasaki dynamics from (2.9)
with only the diffusion term, i.e., there is no adsorption, desorption, or reaction in the system.

ut − D∇ · [∇u− βu(1− u)∇ Jm ∗ u] = 0. (4.4)

This model is interesting to study because of the conservation of mass property for such a
system. This property is an essential feature of a nucleating system if the Lifshitz–Slyosov
growth law is to hold [48]. This law states that the typical length scaleR in a nucleating
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system grows like the power lawtn wheren = 1
3 at intermediate times, i.e.,

R∼ t
1
3 , (4.5)

while it has been shown that a Mullins–Sekerka free boundary problem arises at later times
[11, 49]. However, here we merely wish to observe the Lifshitz–Slyosov growth law at
intermediate times as a means to confirm that this law holds for (4.4) as well as to validate
our computational work. While the law in (4.5) was originally derived for very dilute systems
in which there is conservation of mass, it has been argued that such growth behavior should
also be observed in nondilute systems as well; see [50, 51] and references therein. Thus,
we are not restricted to considering only highly dilute systems.

The typical way one proceeds in order to observe such a scaling behavior in a compu-
tational study is to initialize the concentration field to a constant value with some random
perturbation at each lattice site and then to evolve according to the underlying model equa-
tion, which is (4.4) here. Thus, the concentration field at any given moment in time may be
thought of as one realization of a random field. Below we introduce some statistical quanti-
ties that describe the underlying structure of the concentration field; they are described for
a single realization though each of the quantities is further refined through averaging over
several realizations.

In order to measure the typical length scale in our concentration field, we need to look
at statistical quantities such as the covariance and spectral density function of the con-
centration. These statistical quantities have also been used in studies of the Cahn–Hilliard
equation in [16, 50, 51] and are described in greater detail in those references. (Note that the
spectral density function has been referred to as the structure function in those references,
while the term “structure function” has a different meaning in the stochastic processes and
turbulence literature.) For a single realization of the concentration field, the covariance of
the concentration is defined as a spatial average over the lattice sites,

B(x, t) = 1

N2

∑
x′

u(x′ + x, t)u(x′, t)− 〈u〉2, (4.6)

where 〈u〉 is the mean of the concentration field, which is a constant for (4.4) due to
conservation. For isotropic systems in whichB depends only on the radial distancer = |x|,
the covariance can be further simplified to a function of a single spatial variable by averaging
over spherical shells.

One way to determine the typical length scale of the concentration field is to look at the
Fourier transform of the covariance field which is the spectral density function

S(ξ, t) = B̂(x, t). (4.7)

Again, for isotropic systems, the spectrum will depend only upon the magnitude of the wave
number vector|ξ |. The value of the wave vector at which the spectrum has its maximum
value would then correspond to the typical length of the concentration field. However, such
a quantity can be difficult to calculate numerically; thus we will consider the first moment or
mean of the spectral density function as a measure of the typical length scale of the system.
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For our discrete system, the first moment can be written

ξ1(t) =
∑

ξ ξ S(ξ, t)∑
ξ S(ξ, t)

, (4.8)

when the sum in the denominator serves to normalize the spectral density function. Given the
inverse relationship between length scales in physical space and wave numbers in Fourier
space, the Lifshitz–Slyosov growth law in (4.5) will take the form

ξ1(t) ∼ t−
1
3 . (4.9)

We now describe our numerical results in observing the Lifshitz–Slyosov growth law for
the model in (4.4). The concentration field was initialized with perturbations of amplitude
.05 about a fixed value of .25. The migration potentialJm is chosen to be a Gaussian of
the same form as (3.7) with the choicer0 = .01. The other physical parameters used include
β = 6 andD = 1. The lattice is the same as for the other results in this section while the time
step is1t = .0001. Figure 6 contains a log–log plot ofξ1(t) versust . The dots represent
numerically computed values ofξ1(t) while the solid line has slope− 1

3 and is given for
visual reference purposes. The start-up effects at short times can be clearly seen before the
system eventually settles down to the scaling behavior predicted by the Lifshitz–Slyosov
growth law in (4.9). The least squares fit on the data values in the appropriate asymptotic
regime yield a scaling exponent of−.33± .02, which closely agrees with the predicted
value of− 1

3. Thus, we have confirmed that the Lifshitz–Slyosov law holds for the model
in (4.4) with Kawasaki dynamics as well as further validated our computational scheme. In

FIG. 6. Log–log plot of the mean value of the spectral density function versus time. The solid line has slope
−1

3
and is useful for a visual comparison of the computation with the predicted value from the Lifshitz–Slyosov

growth law. After some start-up effects, the calculated results clearly scale as predicted; the least squares fit of the
exponent is−0.33± 0.02.
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FIG. 7. Contour plots containing examples of the morphology obtained for the model (2.9) withkr nonzero.
Both plots are for the same initial data but the right-hand plot is for a later time than the left-hand plot. The
right-hand plot demonstrates the tendency of the labyrinths to organize into larger scale structures at later times.

future work, we will explore similar issues for mesoscopic models with Arrhenius dynamics
as well as (2.9).

So far in this section, we have validated our spectral method by making comparisons
of our computational results with derived asymptotic results. In all cases, the simulation
results were in excellent agreement with the theoretical prediction. Thus, combined with the
comparisons made in Section 3 with a finite difference numerical scheme, we see that the
spectral method is indeed a very powerful and reliable numerical approach to the solution
of mesoscopic models. Finally, we briefly mention some of the results that are obtainable
with our spectral scheme in other parameter regimes, such as when the reaction ratekr is
nonzero; in such a case complex patterns tend to develop [20]. A typical example computed
in this case can be seen in Fig. 7 where a labyrinthine pattern is observed; the plot on the
right is at a later time than the plot on the left. As we typically observe at later times in such
simulations, the small structures tend to organize into larger structures and more regular
patterns. Further details of such simulations will appear in future publications.

5. CONCLUSIONS

In this paper we have developed spectral-based algorithms for mesoscopic equations
modeling surface processes and shown their greatly enhanced efficiency as compared to
more traditional finite difference schemes. We validated the accuracy of the spectral schemes
through comparison with asymptotic scalings and growth laws. We have also reviewed the
derivation of mesoscopic models for pattern formation from the underlying microscopic
mechanisms and discussed the connections of mesoscopic theories with well known models
such as the Cahn–Hilliard equation and its variants.

Mesoscopic theories such as the ones discussed here in the context of surface processes
are applicable to numerous areas including polymers, smart materials, biological systems,
and complex fluids. We intend to further pursue the development of spectral schemes for
such problems in future work.
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APPENDIX A: DERIVATION OF MESOSCOPIC EQUATIONS

In this appendix, we outline the derivation of mesoscopic evolution equations from the un-
derlying microscopic mechanisms. We begin with a description of some basic microscopic
mechanisms arising in surface processes.

A1. Microscopic Models

Ising models are interacting particle systems defined on a d-dimensional latticeZd. At
each lattice sitex ∈ Zd, an order parameter is allowed to take the values 0 and 1 describing
vacant and occupied sites, respectively. In accordance to the classical Ising model, we refer
to the order parameter as spin. A spin configurationσ is an element of the configuration
space6 = {0, 1}Zd

; we writeσ = {σ(x) : x ∈ Zd} and callσ(x) the spin atx. The energy
H of the system, evaluated atσ , is given by a Hamiltonian

H(σ ) =
∑
x 6=y

J(x, y)σ(x)σ(y)+ h
∑

σ(x),

whereh is attributed to an external field andJ = Jγ is the intermolecular potential defined
by

J(x, y) = Jγ (x, y) = γ d J(γ (x − y)) x, y ∈ Zd, (A.1)

with γ−1 > 0 being the interaction range andJ assumed to be even,J(r ) = J(−r ). The
scaling in (A.1) guarantees the summability of the HamiltonianH , providedJ ∈ L1(Rd).
If the microscopic interactions are attractive, i.e.,J is nonnegative, then we say that the
Ising model is ferromagnetic. In general,J may include a combination of both attractive
and repulsive interactions.

Equilibrium states of the Ising model are described by the Gibbs states at the prescribed
temperatureT ,

µ3(dσ) = 1

Z3

exp(−βH(σ )) dσ, (A.2)

whereβ = 1
kT , k being the Boltzmann constant.Z3 is a normalizing constant so that

µ is a probability measure defined on the configuration space6 = {0, 1}3, where3 is
an expanding (as|3| → ∞) finite box on the infinite lattice, with specified boundary
conditions. It is well known that phase transitions, i.e., nonuniqueness of the Gibbs measures,
may occur at low temperatures, in the infinite volume limit [28].

The dynamics of the model consists of a sequence of flips and spin exchanges that
correspond to various physical processes. We describe these microscopic mechanisms in
detail below.

A1.1. Adsorption/Desorption: Spin Flip Mechanism

A spin flip at the sitex is a spontaneous change in the order parameter; 1 is converted to
0 and vice versa. Physically this mechanism describes the desorption of a particle from the
surface to the gas phase and conversely the adsorption of a particle from the gas phase to
the surface (see Fig. 1).
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If σ denotes the configuration prior to a flip atx, then after the flip the configuration
is denoted byσ x. We assume that a flip occurs atx, when the configuration isσ , with a
ratec(x, σ ), i.e., a spin flip occurs atx, during [t, t +1t ], with probability c(x, σ )1t +
O(1t2). Rigorously, the underlying stochastic process{σt }t≥0 is a jump Markov process
on L∞(6;R) with generator given by

Lad
γ f (σ ) =

∑
x∈ZN

c(x, σ )[ f (σ x)− f (σ )], f ∈ L∞(6;R). (A.3)

An obvious requirement on the resulting dynamics is that, when restricted on a finite di-
mensional box3, they should leave the Gibbs measure (A.2) invariant. This condition is
called adetailed balancelaw and is equivalent to [29]

c(x, σ ) = c(x, σ x) exp(−β1x H(σ )). (A.4)

Here1x H(σ ) = H(σ x)− H(σ ) is the energry difference ater performing a spin flip at the
sitex. The simplest type of dynamics satisfying (A.4), referred to as Metropolis-type, is

c(x, σ ) = 9(−β1x H(σ )), (A.5)

yielding the relaiton on9, 9(r ) = 9(−r )e−r , r ∈ R. Typical choices of9 ’s are9(r ) =
(1+ er )−1 (Glauber dynamics),9(r ) = e−r/2, or 9(r ) = e−r+ (Metropolis dynamics).

A1.2. Surface Diffusion: Spin Exchange Mechanism

A spin exchange between the neigbhoring sitesx andy is a spontaneous exchange of the
values of the order parameter atx andy. Physically this mechanism describes the diffusion
of a particle on a flat surface (see Fig. 1). Note that sites cannot be occupied by more than
one particle (exclusion principle). As in the spin flip dynamics, a spin exchange occurs with
ratec(x, y, σ ) satisfying the detailed balance law

c(x, y, σ ) = c
(
x, y, σ (x,y)

)
exp
(−β1(x,y)H(σ )

)
, (A.6)

whereσ (x,y) is the new configuration after a spin exchange between sitesx and y. Fur-
thermore,1x,y H(σ ) = H

(
σ (x,y)

)− H(σ ) is the energy difference after performing a spin
exchange between the neighboring sitesx and y. The HamiltonianH associated with
diffusion may have a different intermolecular potentialJ than adsorption. The resulting
stochastic process{σt }t≥0 is a jump Markov process onL∞(6;R) with generator given by

Ld
γ f (σ ) =

∑
x∈Zd

c(x, y, σ )
[

f
(
σ (x,y)

)− f (σ )
]
. (A.7)

The Metropolis-type dynamics, which satisfy (A.6), is

c(x, y, σ ) =
{

9(−β1x,y H(σ )), whenx andy are nearest neighbors,

0, otherwise,
(A.8)

where 9(r ) = 9(−r )e−r , r ∈ R. Typical choices of 9 ’s are 9(r ) = 2(1+ er )−1

(Kawasaki dynamics) and9(r ) = e−r+ (Metropolis dynamics).
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A1.3. Arrhenius Dynamics for Adsorption/Desorption and Surface Diffusion

In most Monte Carlo simulations, motion of species is performed according to Metropolis
or Kawasaki dynamics [1]. For such dynamics, the energy barrier for diffusion depends only
on the energy difference between the initial and final states, often known as the heat of the
process. Since the equilibrium state of a system is independent of dynamics, different choices
of microscopic dynamics result in the same long time solution due to the detailed balance
condition. However, time-dependent solutions and the time needed to approach equilibrium
depend on the details of microscopic dynamics. It is then more natural to describe the
activation energy of surface diffusion as the energy barrier a species has to overcome in
jumping from one site to another [30, 31]. This activation energy corresponds (omitting
the zero point energy difference for clarity) to the difference between the minimum and
maximum energies shown in Fig. 1b. The adsorption/desorption mechanisms are handled
similarly. Such dynamics is termed Arrhenius [9].

The Arrhenius adsorption/desorption (spin flip) rate is given by

c(x, σ ) =
{

c0 exp [−β(U0+U (x))], whenσ(x) = 1.

c0, whenσ(x) = 0.

The Arrhenius surface diffusion (spin exchange) rate is given for nearest neighborsx and
y by

c(x, y, σ ) =


c0 exp [−β(U0+U (x))], whenσ(x) = 1, σ (y) = 0,

c0 exp [−β(U0+U (y))], whenσ(x) = 0, σ (y) = 1,

0, otherwise,

where in both formulae

U (x) =
∑
z6=x

J(x − z)σ (z)

is the total energy contribution from the particle interactions with the particle located at the
sitex, while U0 is the energy associated with the surface binding of the particle atx (c0 is
a rate constant that can be chosen arbitrarily). Both spin flip and spin exchange dynamics
satisfy the detailed balance law. A more complex dependence of the activation energy on
the energetics of adjacent sites is also possible, e.g., Arrhenius parabolic jump models [30,
31].

A2. Mesoscopic Models: Local Mean Field Equations

Here we briefly discuss the derivation of mesoscopic theories for each of the micro-
scopic models we introduced above, as well as combinations of such mechanisms. At large
space/time scales and for weak long-range potentials, the small-scale fluctuations of the
Ising systems are suppressed and an almost deterministic pattern emerges described by
suitable, possibly stochastic, integrodifferential equations. The passage in the limitγ → 0
(the interaction range isγ−1; see (A.1)), which in the physics literature is identified with
coarse graining, of quantities like the thermodynamic pressure, total coverage, etc., is known
as the Lebowitz–Penrose limit [32]. Along these lines we study the asymptotics, asγ → 0,
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of the averaged coverage

uγ (x, t) = Eµγ σt (x), (x, t) ∈ Zd × [0,∞)

of the system, whereEµγ denotes the expectation of the IPS starting from a measure
µγ . Similarly, one may study the related asymptotic limit of a suitable averaged in space
occupation

vγ (x, t) = 1

|Bx|
∑
y∈Bx

σt (y),

whereBx is a ball centered atx with radiusR= γ−a ¿ γ−1, whereγ−1 is the interaction
range and 0< a < 1. Through the scalingR= γ−a, the ball Bx where the averaging is
carried out contains enough points so that the random fluctuations will be suppressed due
to the Law of Large Numbers, while at the same time spatial variations in the coverage are
captured since the averaging is performed over regions relatively smaller than the interaction
range. Thus, asγ → 0, uγ (x, t)− vγ (x, t) converges to zero; in addition there is a normally
distributed correction tovγ (x, t) of order O(γ d/2) as in the Central Limit Theorem. We
refer to the review article [33] and references therein for some rigorous results on these
asymptotic limits, while here we present only the formal derivation of the mesoscopic
equations separately for each micromechanism.

A2.1. Adsorption/Desorption: Spin Flip Mechanism

The generator (A.3) yields that the averaged coverageuγ (x, t) = Eµγ σt (x) solves

d

dt
Eµγ σt (x) = Eµγ (1− 2σt (x))c(x, σt ). (A.9)

When the interparticle potential is weak and long range, the fluctuations ofσt (z) around
their averages are approximately independent, the Law of Large Numbers formally applies
and, asγ → 0, ∑

z6=x

J(x − z)σt (z) ≈
∑
z6=x

J(x − z)Eµγ σt (z). (A.10)

In addition there is a normally distributed correction of orderO(γ d/2) in a d-dimensional
lattice due to the Central Limit Theorem. Here we ignore such random corrections, but in
principle they would give rise to a stochastic PDE instead of a deterministic equation. Back
in (A.9), we substitute the spin flip rate, and using (A.10) we obtain, asγ → 0, uγ (x, t) =
Eµγ σt (x) ≈ u(γ x, t), andu solves [6] the mesoscopic equations (2.1) or (2.2) as given in
Section 2 for each choice of microscopic dynamics.

A2.2. Surface Diffusion: Spin Exchange Mechanism

As above, the generator (A.7) yields that the averaged coverageEµγ σt (x) solves

d

dt
Eµγ σt (x) =

∑
y∈N(x)

Eµγ (σt (y)− σt (x))c(x, y, σ ), (A.11)
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whereN(x) denotes the nearest neighbors ofx. Reasoning as in the adsorption/desorption
case we also have that

∑
z6=x J(x − z)σt (z) ≈

∑
z6=x J(x − z)Eµγ σt (z). Rescaling time as

t 7→ tγ−2 in (A.11) and using the approximate independence of different lattice sites for
γ ¿ 1, we obtain for the dynamics (A.8) that, asγ vanishes,uγ (x, t) = Eµγ σtγ−2(x) ≈
u(γ x, t), andu solves [10] the mesoscopic model equations (2.4) in Section 2. Similarly
we can handle the Arrhenius dynamics and obtain (2.5) [9].

When the microscopic fluctuations are retained it can be formally shown that the coarse-
grained variableuγ approximately solves the stochastic mesoscopic equation

uγ
t −∇ ·

{
µ[uγ ]∇

(
δE[uγ ]

δuγ
+ h

)}
− γ d/2∇ · {√2µ[uγ ]Ẇ

} = 0, (A.12)

where the variational derivative and the mobilitiesµ are defined in Section 2B,d is the
space dimension,h is the external field,γ−1 is the interaction radius of the potentialJ in
(A.1), andẆ = (Ẇ1(x, t), . . . , Ẇd(x, t)) is a d-dimensional space/time white noise.

APPENDIX B: RELATIONSHIP OF MESOSCOPIC MODELS

TO GINZBURG–LANDAU MODELS

In this appendix we briefly discuss the connections of the mesoscopic equations with
well known models for phase separation such as the Allen–Cahn and the Cahn–Hilliard
models. If we rescale space asx 7→ x/ε, the potentialJ gives rise to the approximation
of the Dirac distributionJε(x) = ε−d J( x

ε
). Then after a simple change of variables and

formally expanding in Taylor series,

Jε ∗ u(x) =
∫

J(z)u(x + εz) dz

=
∫

J(z)

[
u(x)+ ε∇u(x) · z+ ε2

2
zT∇2u(x)z+ O(ε3)

]
dz. (B.1)

Ignoring theO(ε3) terms and assuming thatJ is radially symmetric, i.e.,J(r ) = J(|r |),
we have that

Jε ∗ u(x) ≈ J0u(x)+ ε2

2
J21u(x), (B.2)

whereJ0 =
∫

J(r ) dr andJ2 =
∫ |r |2J(r ) dr . Then, for instance, (2.2) is approximated by

a “porous medium” version of the Allen–Cahn equation

ut = Du exp(−β J0u)1u+ c0[1− u− exp(−βh)u exp(−β J0u)],

whereD = c0
ε2

2 β J0 exp(−βh). Note that, as discussed in Section 2, the functionλ−1 f (u) =
1− u− exp(−βh)u exp(−β J0u) is bistable or equivalently is the derivative of a double-
well potential when the parameters lie in Region III (see Fig. 2). We remind the reader that
the Allen–Cahn equation has the nondimensional form

ut = 1u+W′(u),

whereW is the double-well potentialW(u) = (u2− 1)2 [39].
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In the case of the surface diffusion we can rewrite the free energy (2.6) as

E[u] = 1

4

∫ ∫
J(r − r ′)[u(r )− u(r ′)]2 dr dr ′ +

∫
Wβ(u) dr.

Wβ(u) 1
2 J0u(1− u)+ 1

β
[u ln u+ (1− u) ln(1− u)]. Wβ is a double-well potential pro-

vided β > βc = 4/J0. Note thatWβ is also known in the polymer science literature as
the Flory–Huggins free energy; see for instance [16]. Then, rescaling and expanding the
convolution as before, we have that

E[u] ≈ Ẽ[u] :=
∫

ε2J2

8
|∇u|2+Wβ(u) dr,

after omitting the higher order terms. This is the standard Ginzburg–Landau functional, in
which case (2.4) becomes a Cahn–Hilliard-type equation

ut −∇ ·
{

µ[u]∇
(

δ Ẽ[u]

δu

)}
= 0, (B.3)

with nontrivial mobilityµ(u) = Du(1− u); recall that in the standard Chan–Hilliard model
µ(u) = 1. Similarly, we may simplify the Arrhenius dynamics equation (2.5) which will
have effective mobilityµ(u) = Du(1− u) exp(−β J0u).

The analogies pointed out here between the mesoscopic and the Cahn–Hilliard and Allen–
Cahn equations hold when the underlying interaction potentials are attractive, as suggested
by the expansions above. However, mesoscopic equations are applicable for any combi-
nation of attractive and repulsive interactions. Furthermore, as discussed in [55] and [6],
respectively, the truncations in the gradient expansions disregard higher order effects as
well as possible anisotropies in the potentialJ. In the vicinity of the critical temperature
and for attractive interactions the Allen–Cahn and Cahn–Hilliard equations become exact
rescaled limits of the mesoscopic models and the underlying particle systems [33]. Models
similar to (B.2), with or without chemical reaction, have been used in the modeling of phase
separation in polymer blends; see [15, 16, 40] and references therein.
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