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In this paper we present spectral algorithms for the solution of mesoscopic equa-
tions describing a broad class of pattern formation mechanisms, focusing on a pro-
totypical system of surface processes. These models are in principle stochastic inte-
grodifferential equations and are derived directly from microscopic lattice models,
containing detailed information on particle—particle interactions and particle dynam-
ics. The enhanced computational efficiency and accuracy of spectral methods versus
finite difference methods are also described 2001 Academic Press
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1. INTRODUCTION

Intermolecular forces dictate macroscopic properties of matter and are inherently rel
to pattern formation in a number of phenomena exhibiting microphase separation, not:
polymer blends, alloys, catalysis, epitaxial growth of advanced materials, and biology. |
act dynamic and equilibrium descriptions of these phenomena can be obtained by molec
simulations, such as molecular dynamics and Monte Carlo algorithms, for a given int
molecular potential [1]. Despite their widespread use, these computational methods
currently limited to short length and time scales, whereas morphological features see
experiments or device sizes often invoke much larger space and/or time length scales
This disparity underscores the need to develop theories for larger scales [3], which take
consideration microscopic details rather than relying only on phenomenology.

Recently, coarse-grained models of the master equation of Ising systems were develc
when the Hamiltonian describes spin exchange, spin flip, or a combination of the two me
anisms [4-9]. Such theories have been termed mesoscopic and local mean field. Thre
homogenization and asymptotics, the underlying macroscopic laws of interface veloc
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surface tension, mobility, and critical nucleus size have also been derived [6, 11-13]
shown to have a direct dependence on the interaction potential. Thus for the first tim
direct rigorous analytical link of molecular interactions with macroscopic laws of tran
port and thermodynamics has been established. This link obviously enables compar
of experimentally measurable quantities to intermolecular forces as well as very effici
evaluation of different interaction potentials.

The mesoscopic equations studied here are derived from first principles, i.e., fror
corresponding master equation describing the relevant microscopic processes, by a rigc
coarse graining. Animportant feature of mesoscopic theories is that they are exactin the |
thatthe interaction potential range becomes infinite without involving truncations or gradit
expansions, which is in contrast to the Cahn—Hilliard [14] (or Cahn—Hilliard—Cook) ar
Allen—Cahn equations often employed to study phase separation of polymers[15-17]. W
the issue of an infinite range potential may appear to be too restrictive, a first compariso
results from the mesoscopic theory with gradient Monte Carlo simulations under far fr
equilibrium conditions indicates that only a relatively short-range potential is adequ
for quantitative agreement [9]. Moreover, asymptotics indicates that the deviation of
solution of the mesoscopic theory from the infinite-range potential decays in an exponer
way, due to an underlying Large Deviation Principle, and decreases with the square
of the problem dimensionality; as a result, mesoscopic theories for 2D and 3D latti
require even shorter range interaction potentials [18]. Furthermore, underresolved sn
scale fluctuations and finite-range interaction effects can be systematically incorporate
the mesoscopic models as stochastic corrections [9]. While further comparisons of Mc
Carlo and mesoscopic simulations are needed, the agreement observed thus far is extri
encouraging and indicates that it may be possible to eventually replace intensive molec
simulations with relatively inexpensive solvers of mesoscopic partial differential equatic
(PDEs) for a large class of problems.

A major advantage of mesoscopic theories is their versatility. In particular, they c
employ various interaction potentials including combinations of attractive and repuls
forces as well as anisotropic ones. Furthermore, various microscopic dynamics of diffus
can be studied (e.g., Metropolis, Kawasaki, Arrhenius, etc.) and various microscopic |
cesses (e.g., diffusion coupled with adsorption, desorption, and reaction) can be explc
systematically. For instance, mesoscopic theories can be applied to systems ranging
nanoscale patterns in surface reaction adlayers on catalyst surfaces, to sintering of al
to diffusion on crystal surfaces and through membranes [9, 19, 20]. Due to the fundame
processes described by such theories (e.g., adsorption, desorption, reaction, and diffu:
extension from model systems to realistic situations and application of mesoscopic the
to additional research areas could be expected.

From the mathematical and numerical points of view, mesoscopic equations are stoc
tic integrodifferential PDEs that describe processes of different time scales. Furtherm
several phenomena, such as dynamics near bifurcation points and pattern evolution a
stages and ripening, exhibit long relaxation times that often preclude simulations fr
reaching equilibrium or steady state. This problem makes comparison with experime
difficult. In addition, parametric studies and on-line control of mesoscale patterns dem.
numerous such simulations, so computational cost becomes a crucial aspect in the
cess of mesoscopic theories. One objective of this work is to exploit the application
spectral methods to solving mesoscopic equations. Such methods are expected to
ciently and accurately solve mesoscopic theories with or without noise. Problems involv
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long-range potentials such as electrostatics in ionic systems are expected to be sol
with unprecedented efficiency since longer range potentials do not require any additic
computational effort for spectral methods. Furthermore, spectral methods can easily
corporate anisotropic potentials, nonlocal mobility terms, as well as convection—diffusi
terms. In fact, the convection—diffusion terms can even be treated exactly in many instar
through the use of appropriate integrating factors. A complete discussion of the advantz
of the spectral methods in comparison to finite difference schemes, which have usu
been employed until now in computational studies of mesoscopic models, is presente
subsequent sections of this paper. Extensions of the methods presented in this pap
stochastic mesoscopic equations will be presented in a follow-up publication.

The organization of this paper is as follows. In Section 2 we review mesoscopic theor
for surface processes. The derivation of mesoscopic models from microscopics as
as the quantitative relation of microscopic and mesoscopic models to Ginzburg—Lan
theories, at least for attractive microscopic interactions, are discussed in Appendices A
B, respectively. Numerical methods are discussed in Section 3, along with efficiency :
accuracy issues in a comparison of spectral techniques with finite difference methods
Section 4, scaling laws and asymptotic regimes are compared with numerical solutic
Finally, Section 5 summarizes the paper.

2. MESOSCOPIC MODELS FOR SURFACE PROCESSES

While mesoscopic models such as the ones described here can appear in a numt
applications, in this paper we focus on processes occurring at fluid—solid interfaces s
as in catalysis, adhesive surfaces, and biological cells. Surface processes have traditio
been modeled using continuum-type diffusion-reaction models [21], where the adsorp
layer has been assumed to be spatially uniform (global mean field theory). This appro
either neglects particle interactions or treats them phenomenologically, while nonec
librium statistical mechanics theories provide an exact microscopic description; see
instance [23] and [24]. The mathematical tools employed in the statistical mechanics mo
are interacting particle systems (IPS), which are Markov processes set on a lattice such ¢
Ising-type systems [25] describing the evolution of an order parameter at each lattice
In this section we review mesoscopic evolution equations arising in surface processes
refer to Appendix A for a discussion on their derivation from corresponding microscog
stochastic mechanisms.

2A. Adsorption/Desorption

The first mechanism we discuss is the desorption of microscopic particles from a surf
to the gas phase above and conversely the adsorption of a particle from the gas p
to the surface as shown schematically in Fig. 1. At a microscopic level this process
described by a spin flip in the order parameter; 1 is converted to 0 and vice versa ur
suitable microscopic dynamics such as Metropolis-type and Arrhenius (see Appendix
For the former, the statistically averaged coveragmlves in a suitable asymptotic limit
the mesoscopic equation

Ut = Y (—B(J *u+ h)[1 —u—exp(—Bhyuexp(—pJ = u)], (2.1)



SPECTRAL METHODS FOR MESOSCOPIC MODELS 367

FIG.1. (a) Schematic of surface atoms of a crystal (open spheres) and microscopic processes: Adsorptio
of an atom (dotted sphere) from the fluid phase, desorption (D) of the adsorbate back to the fluid, and migratior
of adsorbate along the surface. (b) One-dimensional cut of the potential energy surface describing species—c
interactions in the limit of zero concentratiodi(= Jy = 0). Species diffuse from minima of the potential energy
to adjacent sites by overcoming an energy barrier known as activation energy.

whereys is associated with the microscopic spin flip ratéss the interaction potentialj

is a coarse-grained variable that can be viewed as the probability density of the cover
B is the inverse temperature, ahdienotes the external field. Similarly, for the Arrhenius
adsorption/desorption dynamics, we have the mesoscopic equation

Us = Co[1 — u — exp(—Bhyuexp(—BJ * u)], (2.2)

wherecg is a rate constant.

Next we review some basic properties of (2.1) and (2.2). First, both equations are equif
with a comparison principle, at least whér> 0. Steady state solutions of either equation
satisfy the algebraic equation

f(X) :=a(l—x) —xe™™ =0, (2.3)

wherex = exp(gh) andx = JoB, Jo = [ J(r) dr. Figure 2 shows schematically the phase
diagram as a function of the external fieldl and the interaction parametgr Outside
the cuspy envelope, intermolecular forces are either weak or very strong resulting i
single-valued isotherm corresponding to the single root of (2.3). Region | correspond:
a dilute phase, Region lll to a dense phase. Within the cuspy envelope (Region 1), k
phases may exist. Inthis case (2.3) has three solutions; m_(«, A) < Mg = My(a, 1) <

m, = my(«, A), wherem, andm_ correspond to the dense and the dilute phases of tt
system, respectively. The dynamics of cluster growth within Region Il depends on
relative parameter location with respect to git@tionary coexistenceurve (the dotted line

in Fig. 2), given bya = e™*/2. In this last case the roots of (2.3) becomg= 1 and

1

my = 3+ v, for some O0< v < 1.
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FIG. 2. Phase diagram for the system in (2.1) and (2.2). Within the cusp (Region Il), the system is bista
and thus may have regions that are dilute while other regions are dense; outside this cusp, the system tend:
either dilute or dense. The line of stationary coexistence is the dotted line within Region II.

Standing and travelling waves for (2.1) and (2.2) play an important role in the lot
space/time asymptotics of mesoscopic equations [6, 13], since they connect high and
density phases, across a cluster boundary. The rigorous existence, uniqueness, and st
of such solutions follows from the analysis in [34], which covers a broad class of integrod
ferential equations that admit a comparison principle. Other related works include [35, <
Note that for even potentials which are not necessarily radial we obtain direction-depenc
standing and travelling waves [6].

2B. Surface Diffusion

The second mechanism we discuss is the diffusion of particles on a surface, as show
Fig. 1. At the microscopic level this process is described by a spin exchange between
neighboring siteg andy, i.e., a spontaneous exchange of the values of the order parame
at x andy. The microscopic dynamics dictate the rates of the spin exchange, and typi
examples are the Metropolis-type and Arrhenius dynamics. The mesoscopic model
Metropolis-type dynamics is [8]

U — DV [Vu—Bu(l—uwVvIx*xu] =0, (2.4)

whereD = ¢(0) andy is again associated to the spin exchange rates. For the Arrhen
diffusion mechanism we obtain the mesoscopic equation [9]

Ut — DV - {exp(—BJ * u)[Vu — Bu(1l — u)VJ x u]} = 0, (2.5)

whereD = exp(—BUp). In both equations we assumed a zero external fieltithere is a
nontrivial external field, then by introducing the free energy

E[u] = —% // Jo —rHu)urHdrdr’ + / %[ulnu + @ —uwlinl—uw]dr,
(2.6)
(2.4) and (2.5) can both be written as the constrained gradient flow

U —V - {M[u]v<8E[“] + h)} =0, 2.7)

su
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In the case of (2.4) the mobility terpa[u] is u[u] = DBu(1 — u), while in the Arrhenius
case (2.5) it is a nonlocal function given ppyu] DBu(1 — u) exp(—BJ * u). Note that in
both equations the coveragesatisfies O< u < 1 due to the presence of the teafl — u)

in the mobilities, which enforces the exclusion principle (i.e., at most one patrticle per latt
site) and consequently the monolayer structure at the mesoscopic level.

Equations (2.4) and (2.5) include two competing forces: a Fickian diffusion term whi
competes with an uphill diffusion due to the attractive potneliat 0. We expect that
when the parametet is large, the particles will tend to organize in clusters, overcomin
the Fickian diffusive effects. These heuristics become clearer with the use of a lineariza
argument around a constant coveragewhich yields a regime adpinodal decomposition
Indeed, we consider a solutian= ug + € explwt + i€ - x) of (2.4), for instance, where
Ug is a constant state ard< 1. The linearization of the equation aroungl yields the
dispersion relation

w = —|£°[1 — Buo(1 — ug) I (©)], (2.8)

whereJo = [ J(r)dr andJ denotes the Fourier transform &f For example, the Fourier
transform of the potential used as our example in this pagér) = (1/\/27rg)
exp—|r|2/2r2), is J(§) = exp—r2|£|2/2). Thus, suitables, uo, and£’s give rise to a
positive eigenvalue» and subsequent exponential growth of the coverageventually
controlled by the exclusion principle), which leads to the formation of clusters.

2C. Mesoscopic Theories for Multiple Micromechanisms

Typically, multiple surface processes take place simultaneously, and one of the prac
advantages of the mesoscopic theories is that they can be easily modified, combining
various spin flip/exchange mechanisms described earlier. Here we present a straigh
ward generalization of the mesoscopic theory developed in [7] (see also [13]). We cons
Arrhenius adsorption/desorption dynamics, Metropolis surface diffusion, and a simple
molecular reaction; the corresponding mesoscopic local mean field equation is

Uy — DV - [Vu—Bu(l—u)VJy*U] — [kap(l—u) — kguexp(—BJy * U)] + keu = 0.
(2.9)

Here Jy and Jn, are the intermolecular potentials for surface desorption and migratio
FurthermoreD is the diffusion constank;, ky andk, denote, respectively, the reaction,
desorption, and adsorption constants; anid the partial pressure of the gaseous specie
(kq, ka, andp are algebraically related to the parametgrsndh in (2.2)). Finally,u denotes
the surface coverage of the adsorbed species.

The Fickian diffusion case is an interesting extrendg £ 0) typically adopted in
diffusion—reaction models at the continuum and microscopic levels [22, 24, 37].

U — DVU — [Kap(1 — u) — kguexp(—BJg * u)] + keu = 0. (2.10)

The steady states of Egs. (2.9) and (2.10) are the same as those of Egs. (2.1) and (2.2
thus the phase diagram in Fig. 2 also holds here with % andi = JpB8. WhenJy = Jn,
andk, =0, (2.1), (2.2), and (2.9) also share the same standing wave. However, there
no general rigorous results available on the existence of travelling waves for (2.9); sc
numerical simulations for identical interaction potentidls= Jg = J were carried out in
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[7], indicating the existence of nonmonotone travelling waves. Finally, it is easy to see tl
the free energ¥[u] is a Lyapunov functional for (2.9).

Clearly we can also consider variants of (2.9) with Arrhenius diffusion dynamics. FL
thermore, it is possible to include fluctuations in the mesoscopic equations we discus
derived directly from each of the micromechanisms, and satisfying fluctuation—dissipat
relations [7, 9]; see also Appendix A. The role of fluctuations is critical, for instance,
nucleation and spinodal decomposition, and we extend the spectral methods presentec
to stochastic mesoscopic equations in [D. Horntrop, M. Katsoulakis, and D. Vlachos,
preparation].

2D. Macroscopic Limits and Interface Dynamics

Some aspects of the complex relations between the above micro-, meso-, and me
scopic models were explored in [5-7, 9, 11, 13, 26, 27] (and references therein), wt
the authors have derived macroscopic PDEs, describing evolving clusters formed ur
the influence of attractive microscopic interactions. We also refer to the review article [
for many other related references. In [6] it was shown that stochastic Ising models w
spin flip dynamics yield evolving clusters moving with normal velocity which is a (pos
sibly anisotropic) function of the principal curvatures of their boundaries. This functic
is actually described by a Kubo—Green-type formula which also specifies the relations
between the mobility and the surface energy of the propagating cluster boundaries on
hand, and the microscopic interaction potential and microscopic dynamics of the Is
model on the other. All these results are valid globally in time, the motion of the interfa
being interpreted in the viscosity sense after the onset of the geometric singularities. In |
similar results were obtained for Egs. (2.9) and (2.10), when multiple surface mechanis
coexist and interact. Finally, in [11] it was formally shown that the Kawasaki/Metropoli
dynamics with isotropic potentials give rise to a Mullins—Sekerka free boundary proble
with surface tension identified through the microscopic Hamiltonian. This last result w
rigorously established for smooth Mullins—Sekerka flows in [E. Carlen, M. Carvalho, al
E. Orlandi, in preparation]. We revisit some of these results in Section 4, where we comf
them to our simulations.

3. NUMERICAL SCHEMES

Given the highly nonlinear nature of the mesoscopic model equation in (2.9), it is natu
to use numerical methods in order to study such an equation. In light of the wide variety
physically relevant problems that can be described by (2.9), itis important that the numer
scheme be efficientand highly accurate. In particular, we are interested in numerical sche
which will allow for longer time evolutions involving greater length scales than are possit
with Monte Carlo simulations while incorporating molecular effects that are not consider
by macroscopic, phenomenological models.

The two main steps in devising a numerical scheme for (2.9) are the determination of
technique used to calculate the convolutions and the method for numerically solving
differential equation once the appropriate convolutions have been computed. Two nat
approaches to these steps would be related to finite difference or lattice-based metl
and spectral methods. While finite difference methods have been previously appliec
mesoscopic models by two of the authors [13] as well as others [7, 20], we are unawar
the prior application of spectral methods in this context, though such methods have b
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applied to a phenomenological model equation for 2D turbulence that has some featur
common with our mesoscopic model [41], and a hybrid method has been applied in a st
of the Ginzburg—Landau equations [52, 53]. We briefly describe each of these approa
in turn below and make performance comparisons at the end of this section.

3A. Finite Difference Methods

The basis of finite difference methods is the discretization of the physical domain int
lattice or array of points at which the solution of the problem is computed. The lattice poil
are chosen here to be equally spaced with spaging@nd Ay. The first task in applying
a finite difference method to (2.9) is to determine a means of calculating the value of
convolution integrals at each lattice site. One such approach would be to use a traditiona
merical integration technique such as the trapezoid rule. However, it is well known (see [
for example) that numerical integration of multiple integrals is much less efficient than tt
of single integrals; thus, the calculation of the convolutions needed at every node point
each time step will prove to be a computational bottleneck, unless more sophisticated t
nigues are employed. In the following paragraphs, we briefly describe some approaches
in the literature to reduce the computational time needed to calculate such convolutic
We also discuss why these approaches, while certainly an improvement of the stan
guadrature technique, are still limited in applicability.

One set of such methods takes advantage of properties of the migration and desor|
potentialsJ;,, and Jy4 to simplify the calculation. For instance, for rapidly decaying poten
tials, i.e., potentials with relatively short correlation ranges, it is possible to calculate |
convolution integral using only those grid points located within a small circle of the poi
about which the convolution is being computed, since the integrand is essentially zero
yond this circle. The radius of this circle is typically referred to as the cutoff distance of t|
potentials. Lists of neighbors can be maintained to speed up the calculation of the conv
tion [1] at the expense of larger memory requirements. Of course, while the determinat
of the neighbors of each point does require some initial computational time, the amour
computational time required for each time step is greatly reduced for potentials with sh
range correlations. However, the storage requirements rapidly become quite large w
large neighborhoods are required for accuracy, in complete analogy to molecular dynar
and Monte Carlo simulations.

Another physical space approach that could be taken in the calculation of the convolu
integrals is to use a Gaussian quadrature technique. The main disadvantage of suc
approach is that the integration nodes do not correspond with the lattice sites, thus indu
an interpolation error in determining the function values away from the lattice sites.
approach similar to Gaussian quadrature, which, in contrast, requires equispaced integr
nodes, has been used in [43] to calculate convolution integrals with Gaussian potentials
a localized formula which is well suited for parallel computations. The greatest drawb:e
to this technique is the specificity to Gaussian potentials; if other (possibly anisotrop
potentials were to be considered, the quadrature formula would have to be rederived
could even require a more complicated, less localized form.

The other main step in creating a finite difference scheme for (2.9) is making an apr
priate discrete approximation to the underlying PDE. Since (2.9) is honlinear and parabc
it is reasonable to consider an explicit method which replaces the spatial derivatives v
centered difference formulas and the temporal derivative with a forward difference [44, 4
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Thus, neglecting any errors in the calculation of the convolutions, such a method wo
have order 1 accuracy in time and order 2 accuracy in space.

Another important issue in the use of finite difference methods is the choice of tir
step At relative to the mesh spacimgx and Ay to ensure the numerical stability of the
algorithm. While it is possible to determine an explicit stability criterion for the linearize
version of (2.9), with the convolutions replaced by the asymptotic expansion in (B.1), st
a formula is quite complicated and is effectively a modification of the standard stabili
criterion for the heat equatioq'g%;2 + % < % [44, 45]. Thus, in addition to the large
number of computations needed at every time step just to compute the convolutions, a:
small time step is necessary for numerical stability.

3B. Spectral Methods

Spectral methods are a class of numerical schemes that take advantage of many prop
of Fourier transforms, especially the fact that differentiation in physical space correspo
to a multiplication in Fourier space. The computational efficiency of a spectral meth
relies upon the existence of the fast Fourier transform (FFT) to pass between physical s|
and Fourier space [46, 47]. We take the Fourier transform of (2.9) in spatial variables ¢
thereby reduce the very complicated PDE (2.9) to afirst-order nonlinear ordinary differen
equation (ODE),

0 = (—kap — kr — 472DIED)0 + F (W), (3.1)
where¢ is the Fourier space variable aﬁﬁﬁ) is the spatial Fourier transform of
F(u =kap— DBV - (UL —Uu)V Iy xU) — kguexp(—BJy * u). (3.2)

The numerical calculation (ﬁ/(a) proceeds in a rather straightforward manner through th
use of FFTs and the fact that convolutions are merely products in Fourier space. For insta
the Fourier space representation of the last term in (3.2) can be numerically compute
multiplying J4 and @, transforming back to physical space for exponentiating and mult
plying by u, and finally transforming back to Fourier space. Therefore, the computatior
problem reduces to the solution of a first order nonlinear ordinary differential equation w
a forcing function which can be calculated rather efficiently at every point of the lattice f
every time step. The accuracy of the calculation of the forcing function will also be rath
high given the exponential accuracy of spectral methods.

Thus, we wish to select an ODE solver that is straightforward to implement for nonline
equations, has a high level of accuracy, and has good stability properties. Given the r
tive ease of use of explicit methods for nonlinear equations, we selected the second ¢
accurate Heun’s method to solve the resulting ODE in (3.1). Heun’s method uses an E
predictor and a trapezoidal corrector and, as would be expected of any explicit meth
has potentially strict time step requirements for numerical stability. The stability analy:
of this method applied to (3.1) with F linearized and convolutions replaced by (B.1 (s
Appendix B)) indicates that the nonlinear terms tend to lessen the severity of the time <
restriction imposed by the displayed linear term in (3.1) for some parameter regimes; h
ever, in general, it is prudent to use the stricter limitaijkgp + k. + 47°D|£[>) At < 2.
Note that since the largest possible valuegif is essentially—-L- + 1 this time step

(ax)2 1 (Ay)?
restriction is basically as severe as required by the finite difference method. Thus, this n
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straightforward spectral approach would result in a potential increase in computatic
speed and improved accuracy only in the calculation of the nonlinear terms at each t
step as compared with the finite difference approach. Of course, in both approaches
time step restriction could be greatly reduced or even eliminated through the use o
implicit method; the major difficulty in using such an integrator would be the rather hig
computational cost of solving nonlinear equations at each time step.

However, since the severity of the time step restriction is predominately caused by
presence of the term multiplying in (3.1), the elimination of this term should allow for
the use of much longer time steps. The use of the integrating factor

p(t) = expl(kap + ki + 472D[&[H)t] (3.3)

exactly treats this term and thereby allows the use of a larger time step while still avoid
numerical instabilities [46]. In detail, we multiply Eq. (3.1) by the integrating factor an
obtain

(PO = p(F (). (34)
The application of Heun’s method to the ODE (3.4) gives

fi(tar1) = o(—AD(O(t) + AtF(U) (),

. . At . _
U(th+1) = p(—ADU(tn) + 7[0(—At)F(U)(tn) + F(0) (th2)]- (3.5)

The formula in (3.5) demonstrates the explicit and exact calculation of the linear terms
also shows the damping at the largest wave numbers that would be expected by a diffu
term as indicated by the dispersion relationship in (2.8).

In careful numerical studies, we have observed no significant loss of accuracy in m
situations by when we used a time step that is one order of magnitude larger than woul
required if we had not used the integrating factor. However, in situations where large w
number effects are important, the use of a large time step tends to prevent the forme
of small-scale structures at short times; such behavior is reasonable as can been se
considering the integrating factorin (3.3) and the discretized scheme in (3.5). (Fdr tarde
At, the quantityo (— At) is quite small.) While this suppression of small-scale perturbatior
at short times does not necessarily change quantitative features of the results at later ti
such as the statistical measures of the size of the typical length scale discussed in Sect
the concentration configurations will typically appear to be qualitatively different even wi
the same initial data. Another situation in which it would be potentially inadvisable to ta
significantly larger time steps than allowed by the standard stability analysis for a spec
method without the integrating factor is when the balance between the migration term anc
standard diffusion term is rather sensitive to perturbation. The stabilizing scheme propc
in [54] could potentially be applied here to resolve the inherent stiffness in the problem
long time calculations. All results given in this paper have been carefully validated to ins|
that an appropriate time step has been used. In the remainder of this paper, the term sp
method refers to use of the spectral method in conjunction with an integrating factor.

It is important to point out that it is possible to make the time steps in physical spe
rather than Fourier space in a spectral-based approach; however, for the model being st
here, there is no particular advantage to doing so sinceatid( are needed at every
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time step. Another noteworthy point is that the spectral method as described above assi
periodic boundary conditions; the use of Chebyshev polynomials allows the use of ot
types of boundary conditions [46, 47].

3C. Comparison of Numerical Schemes

We now compare the computational performance of the finite difference scheme and
spectral scheme described above. For the purposes of this comparison, we assume th
system is nonreactivék, = 0) and that there is no surface diffusiob = 0); thus, (2.9)
reduces to

Ut — [Kap(l —u) — kguexp(—BJyg x u)] = 0. (3.6)

This case is attractive for computational comparisons for several reasons. This prob
contains the main features of the complete model including the appearance of convolu
in a nonlinear term as well as the possibility of spinodal decomposition; (see Section
The removal of the Fickian diffusion eliminates the obvious advantage in time step s
At of the spectral method due to the use of the integrating factor and allows for a dir
comparison of the accuracy and speed of the convolution calculation in an environment
is similar to that of the complete model (2.9).

For the purposes of this comparison, the finite difference scheme implements the calc
tion of the convolutions using the “neighborhood” technique described earlier. The effec
the size of the neighborhood on computational speed and accuracy is certainly an impol
aspect of our comparisons below. For the spectral scheme, we use the Euler method r
than Heun’s method so that comparisons are being made between methods which are
order 1 in time. The desorption potential is a Gaussian given by

Ja(r) =

1 —|r|?

\/ﬂ exp( 22 ) (3.7)

All physical parameters are selected to be the same in both dasesi, p=1, kg =

20, B = 5.7, andro = .02. The computational parameters are the same as welk=

Ay = Téa = % andAt = .001. Comparisons are made after 500 time steps from an initi
configuration in whicthu is 1 inside a circle of radiué and exponentially decays rapidly to
0 outside the circle.

The timing of the codes was completed on an SGI Octane workstation with an R10(
processor and is given in Table | with execution times rounded to the nearest second.
¢ given for the finite difference results refers to the radial distance in terms of number
neighbors from the point about which the convolutions are being computed. For instar
¢ = 3means that all lattice points within a circle of radius)Xare used in the calculation of
the convolution. As can be seen from Table I, evertthe3 neighbor finite difference code
required four times as long to complete as did the spectral code; the difference became n
more pronounced a&increased. These timing results also agree with the estimates tt
would be obtained by considering operation counts for the calculation of the convoluti
since that is the most computationally demanding part of either code. For the spectral ¢
the calculation of the FFTs needed for the convolution ta®edl?log(N)) and is the
dominant factor in the computation time since the actual convolution itself is@aN?).

On the other hand, the finite difference code must calc\gteonvolutions, each with
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TABLE |
Comparison of the Computation
Times for the Solution of (3.6) Using
Various Techniques

Technique Time
Spectral 1:50

Finite differencef = 3 7:33
Finite differencef = 4 13:03
Finite differencef =5 21:36
Finite differencef = 6 30:24
Finite differencef =7 40:44

Note The time is given in terms of min-
utes:seconds and is rounded to the nearest
second.

O(¢?) neighbors, and is thus rought®(N2¢2). The appropriateness of this quantity to
describe the computational time of the finite difference scheme can be seen by conside
Table I; doubling? from 3 to 6 required almost exactly four times more computational time
as predicted.

However, in order to get a complete picture for comparison, itis also important to consi
the relative accuracy of the results. Given that, for the choicg @fidAx used heref = 5
would encompass roughly two standard deviations for the potential, it is not surprisi
that the results fof < 5 were quite different than the spectral results. On the other har
for ¢ = 6 the difference between the finite difference results and the spectral results
of order 107 for a typical lattice site; for = 7, the difference was only of order 10
Thus, referring to Table | we see that the finite difference approach requires more thal
order of magnitude additional computational time in order to achieve results compare
to those of the spectral method. Even for much smaller valuegs @huch shorter range
potentials) and thus smaller necessary valuéstbere would still be a noticeable difference
in computational time required; on the other hand, potentials with longer range correlati
(largerro) would require much largerfor accuracy, making finite differences with standard
guadratures for convolutions impractical.

Similar timing and accuracy considerations also hold for the modelbvigh 0. However,
the fact that the spectral method with the integrating factor is still numerically stable w
a time step one to two orders of magnitude larger than can be used in a finite differe
scheme means that the spectral approach gives a two to three orders of magnitude redt
in computation time as compared with a finite difference scheme.

While it is possible to combine the two main approaches described above (e.g., ¢
volve with a spectral method and then use finite difference on the underlying mo
equation), such a scheme should not provide any advantages over a purely spectre
proach. Such an approach has been used in the literature in a study of the time-depel
Ginzburg-Landau equation [52, 53]. Certainly the computation time for finite differenc
would be reduced by having a faster means of calculating the convolutions; however,
potential speed-up resulting from the larger time steps that are possible by treating
equation spectrally with the integrating factor is completely lost in such a combination
approaches.
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In the next section, we make comparisons with asymptotically predicted behaviors
further support the validity of our results. Given the clear computational advantage of
spectral method, we use it exclusively in the remainder of this paper.

4. SCALING AND GROWTH LAWS

In order to further validate the results obtained from the spectral simulations, we n
describe some comparisons with various well known and widely accepted scaling :
growth laws. The first of these comparisons is for the same model (3.6) that was considere
the timing comparisons in the previous section. For that model, Fig. 2 describes the beha
of the system for various combinations of system parameters. Near the line of statior
coexistence (the dotted line of Fig. 2), the normal velocity of the cluster boundaries is gi\
byV = —uok, whereuw is the mobility,o is the surface tension, ards the curvature. Both
the mobility and the surface tension can be given by Kubo—Green formulas, as show
[13]. Thus, on the line of stationary coexistence, the rate of decay of the size of thie f&eld
directly proportional to the curvature and inversely proportional to the size of the field, i.e

bk O (4.1)

A solution of this equation is of the form

R(t) = V/c1 — Cot. (4.2)

Away from the line of stationary coexistence, the curvature effects are of lower order &
the rate of change of the size of the system is directly proportional to the travelling we
speed; thusR should be a growing linear function ofabove the stationary coexistence
curve and a decaying linear function below the stationary coexistence curve.

In order to try to observe these behaviors in our computer simulations, we initialized 1
concentration field with a circle centered at the origin within which the concentration is
outside this circle, the concentration exponentially decayed to 0. The physical parame
chosenhereate = 1, p = 1,ky = 20, andg = .01. Note that these physical parameters
correspond tex = % = .05 andr = JoB8 = B in the phase diagram in Fig. 2 sindg =
J Ja(r)dr = 1 for the potential in (3.7) regardless of the choicepfThe computational
domain is a box with sides of length 1 with periodic boundary conditions. Ax1.228
lattice is selected, makinghx = Ay = 1%8’ while the time step isAt = .02. Figure 3
shows the behavior of the radius of the circle as time evolved; for each curve, the d
represent the simulated radius while the solid lines are the least squares fits of the da
the appropriate curves. The top curve in Fig. 3 is the radius of the circle for theg/atug5
which is above the line of stationary coexistence; the linear growth that was theoretic:
predicted is quite visible. Likewise, the linear decay that was predicted to occur bel
the stationary coexistence curve can be seen in the lowest curve in Fig. 3, which dey
the radius forg = 5.7. The middle curve is fo = 6.0, which is very near the stationary
coexistence curve; the fit of the data to the predicted form of the solution in (4.2) is qu
close. Note as well that the change in the radius occurred on a much slower time scale v
in the parameter regime near the line of stationary coexistence, as predicted by asymp
arguments in [13].
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FIG. 3. Behavior of the radius of a circular patch of high concentration centered at the origin for vario
choices off. The dots represent computed values while the solid lines represent least squares fits to approy
functions. The top curved(= 6.5) shows the linear growth predicted f®above the line of stationary coexistence;
the middle curve # = 6.0) agrees with the prediction in (4.2) for parameter regimes near the line of stationa
coexistence; the bottom curvg & 5.7) shows the linear decay predicted fBrbelow the line of stationary
coexistence.

Itis also interesting to explore what happens to the above model when surface diffus
is present in the system, i.d®, # 0. In this case, the mesoscopic model equation takes t
form

U — DV - [Vu—BUu(l—uw)VIn U] — [kap(l—u) — kguexp(—BJq xu)] = 0. (4.3)

Since there is no comparison principle for this model, it is not possible to rigorously der
results here that are similar to those obtained for the earlier model (3.6) using viscosity s
tion techniques. However, for small values of the diffusion condiatihe same asymptotic
arguments do hold formally and thus we would expect to observe behavior similar to that
served for the modelin (3.6) [13]. Here we consider a system near the stationary coexist
curve (8 = 6.0) with the other physical parameters unchanged but with a slightly small
time stepAt = .01. We select,, = Jy and initial data of the same form as before. Figure £
contains a plot of the radius of the circle as a function of timelJoe 10-3, 1074, 1075,
and 0 going from left to right. The dots are the actual radius from the computer run wt
the solid lines are the least squares fits of the data to curves of the form of (4.2). Thus we
that curvature effects still determine the decay of the system for small diffusion constal
though it is clear that the diffusion mechanism will come to dominate the results for lar
diffusion constants.

An additional physical situation relating to the model in (4.3) that we explore numerica
is the merger of clusters of high concentration when the diffusion conBt&small com-
pared to the adsorption/desorption constants. In the parameter regime above the stati
coexistence line, circular patches that are initially large enough relative to the correlat
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100 200 300 400

FIG. 4. The effect of diffusion on the decay of the radius of a circular patch of high concentration centerec
the origin in a parameter regime near the line of stationary coexistence. From left to right, the curves are for
diffusion constant® = 103,104, 1075, and 0. In all cases, the radius decayed as predicted by (4.2); howeve
this formal asymptotic prediction will not hold for large values»f

lengthrq of the migration and desorption potentials such that the circular regions persist :
grow in time would eventually meet at a single point, thereby creating a singularity beyo
which asymptotic arguments could only hold formally. Past this initial meeting, formally or
would expect the boundary to have a pair of cusp-like structures until the merger is compl
The sharpness of these cusps should be greater in parameter regimes further from the st
ary coexistence line for the following two reasons: (1) Curvature effects start becomingm
importantwhen the parameters are near the stationary coexistence curve because the ef
curvature on the velocity of the boundary is no longer negligible when compared to the tr
elling wave speed, i.e., the enhanced velocity of the boundary at high curvature locations
tend to smooth the boundary; (2) the travelling wave transition front between high conc
tration and low concentration tends to be much steeper away from the stationary coexist
curve.

Figure 5 contains computational results which confirm the behavior described in
preceding paragraph. These computations used the same parameters used for Fig. ¢
the additional choicedd = 10~. The initial data consisted of a pair of circles centerec
on thex-axis atx = +£.15; the concentration field was set to be 1 inside these circle
and exponentially decayed to 0 outside the circles. The plots in Fig. 5 are contour pl
of the concentration function with lighter shading representing higher concentrations;
displayed contours represent concentrations of .1, .5, and .9. We consider the circles to
merged when the contours corresponding to a concentration of .5 have touched. The tof
plots in Fig. 5 are fo = 6.1, which is relatively close to the stationary coexistence curvi
(B =~ 6 for our choice oky, ks, and p) so that the curvature effects should be important
on the other hand, the bottom two plots in Fig. 5 aredet 7, which is much further from
the stationary coexistence line, making curvature effects negligible. The left-hand plots
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FIG.5. Contour plots showing the effect gfon growing and merging circular patches of high concentration
in parameter regimes above the line of stationary coexistgheeg for our parameter choices). The top two plots
are forg = 6.1, while the lower two plots are fgg = 7.0. The left-hand plots are for a time just after the circles
have begun to merge; the right-hand plots are for a comparable later time. The top plots show the smoothil
corners that would be expected in parameter regimes close to the statrionary coexistence curve; the lower
have much sharper points on the boundary.

each row depict the system just after the circles have begun to merge, while the right-f
plots correspond to comparable later times. Even just after the merger, the tendency o
curvature effects to smooth the boundary are already observable; at the later times dep
in the right-hand plots, the smoothing of the interface where the two circles are merg
is quite noticeable. Thus, our computations are in agreement with the formal asympt
predictions.

We now consider the mesoscopic model equation for the Kawasaki dynamics from (Z
with only the diffusionterm, i.e., there is no adsorption, desorption, or reaction in the syste

U — DV [Vu—-Bul—uVi,*u] =0. (4.4)
This model is interesting to study because of the conservation of mass property for su

system. This property is an essential feature of a nucleating system if the Lifshitz—Slyo
growth law is to hold [48]. This law states that the typical length s¢aia a nucleating
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system grows like the power latd wheren = % at intermediate times, i.e.,
1
R~ 13, (4.5)

while it has been shown that a Mullins—Sekerka free boundary problem arises at later til
[11, 49]. However, here we merely wish to observe the Lifshitz—Slyosov growth law
intermediate times as a means to confirm that this law holds for (4.4) as well as to valid
our computational work. While the law in (4.5) was originally derived for very dilute systen
in which there is conservation of mass, it has been argued that such growth behavior sh
also be observed in nondilute systems as well; see [50, 51] and references therein. T
we are not restricted to considering only highly dilute systems.

The typical way one proceeds in order to observe such a scaling behavior in a com
tational study is to initialize the concentration field to a constant value with some rand
perturbation at each lattice site and then to evolve according to the underlying model ec
tion, which is (4.4) here. Thus, the concentration field at any given moment in time may
thought of as one realization of a random field. Below we introduce some statistical qua
ties that describe the underlying structure of the concentration field; they are describec
a single realization though each of the quantities is further refined through averaging c
several realizations.

In order to measure the typical length scale in our concentration field, we need to Ic
at statistical quantities such as the covariance and spectral density function of the ¢
centration. These statistical quantities have also been used in studies of the Cahn—Hil
equation in [16, 50, 51] and are described in greater detail in those references. (Note tha
spectral density function has been referred to as the structure function in those referer
while the term “structure function” has a different meaning in the stochastic processes
turbulence literature.) For a single realization of the concentration field, the covariance
the concentration is defined as a spatial average over the lattice sites,

B(x,t) = % Z ux’ + x, Hu(x’, t) — (u)2, (4.6)

where (u) is the mean of the concentration field, which is a constant for (4.4) due
conservation. For isotropic systems in whiBldepends only on the radial distarrce- | x|,
the covariance can be further simplified to a function of a single spatial variable by averag
over spherical shells.

One way to determine the typical length scale of the concentration field is to look at
Fourier transform of the covariance field which is the spectral density function

S(E, 1) = B(x, 1). (4.7)

Again, for isotropic systems, the spectrum will depend only upon the magnitude of the w:
number vectoté|. The value of the wave vector at which the spectrum has its maximu
value would then correspond to the typical length of the concentration field. However, sl
a quantity can be difficult to calculate numerically; thus we will consider the first moment
mean of the spectral density function as a measure of the typical length scale of the sys
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For our discrete system, the first moment can be written

=0
&1(t) > SE.D

(4.8)

whenthe sumin the denominator serves to normalize the spectral density function. Giver
inverse relationship between length scales in physical space and wave numbers in Fo
space, the Lifshitz—Slyosov growth law in (4.5) will take the form

gt ~ 73, (4.9)

We now describe our numerical results in observing the Lifshitz—Slyosov growth law f
the model in (4.4). The concentration field was initialized with perturbations of amplitu
.05 about a fixed value of .25. The migration potenflalis chosen to be a Gaussian of
the same form as (3.7) with the choige= .01. The other physical parameters used includ
B = 6andD = 1. The lattice is the same as for the other results in this section while the tir
step isAt = .0001. Figure 6 contains a log—log plot &f(t) versust. The dots represent
numerically computed values gf(t) while the solid line has slope% and is given for
visual reference purposes. The start-up effects at short times can be clearly seen befol
system eventually settles down to the scaling behavior predicted by the Lifshitz—Slyo
growth law in (4.9). The least squares fit on the data values in the appropriate asympt
regime yield a scaling exponent ef.33+ .02, which closely agrees with the predicted
value of—%. Thus, we have confirmed that the Lifshitz—Slyosov law holds for the mod
in (4.4) with Kawasaki dynamics as well as further validated our computational scheme

10

1
FIG. 6. Log-log plot of the mean value of the spectral density function versus time. The solid line has slc
—% and is useful for a visual comparison of the computation with the predicted value from the Lifshitz—Slyos

growth law. After some start-up effects, the calculated results clearly scale as predicted; the least squares fit
exponent is-0.33+ 0.02.
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FIG. 7. Contour plots containing examples of the morphology obtained for the model (2.9 witinzero.
Both plots are for the same initial data but the right-hand plot is for a later time than the left-hand plot. T
right-hand plot demonstrates the tendency of the labyrinths to organize into larger scale structures at later tir

future work, we will explore similar issues for mesoscopic models with Arrhenius dynami
as well as (2.9).

So far in this section, we have validated our spectral method by making comparis
of our computational results with derived asymptotic results. In all cases, the simulat
results were in excellent agreement with the theoretical prediction. Thus, combined with
comparisons made in Section 3 with a finite difference numerical scheme, we see tha
spectral method is indeed a very powerful and reliable numerical approach to the solu
of mesoscopic models. Finally, we briefly mention some of the results that are obtaing
with our spectral scheme in other parameter regimes, such as when the reactigrigate
nonzero; in such a case complex patterns tend to develop [20]. A typical example compt
in this case can be seen in Fig. 7 where a labyrinthine pattern is observed; the plot on
right is at a later time than the plot on the left. As we typically observe at later times in su
simulations, the small structures tend to organize into larger structures and more reg
patterns. Further details of such simulations will appear in future publications.

5. CONCLUSIONS

In this paper we have developed spectral-based algorithms for mesoscopic equat
modeling surface processes and shown their greatly enhanced efficiency as compar:
more traditional finite difference schemes. We validated the accuracy of the spectral sche
through comparison with asymptotic scalings and growth laws. We have also reviewed
derivation of mesoscopic models for pattern formation from the underlying microscoy
mechanisms and discussed the connections of mesoscopic theories with well known mc
such as the Cahn—Hilliard equation and its variants.

Mesoscopic theories such as the ones discussed here in the context of surface proc
are applicable to numerous areas including polymers, smart materials, biological syste
and complex fluids. We intend to further pursue the development of spectral schemes
such problems in future work.
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APPENDIX A: DERIVATION OF MESOSCOPIC EQUATIONS

In this appendix, we outline the derivation of mesoscopic evolution equations from the |
derlying microscopic mechanisms. We begin with a description of some basic microscc
mechanisms arising in surface processes.

Al. Microscopic Models

Ising models are interacting particle systems defined on a d-dimensional Eftice
each lattice sit& € Z%, an order parameter is allowed to take the values 0 and 1 describi
vacant and occupied sites, respectively. In accordance to the classical Ising model, we
to the order parameter as spin. A spin configuratiois an element of the configuration
spacex = {0, 1}Zd; we writeo = {o(X) : x € Z%} and callo (x) the spin aix. The energy
H of the system, evaluated @t is given by a Hamiltonian

Hio) =) I, y)o(x)a(y) +h > o(x),

Xy

whereh is attributed to an external field ardd= J” is the intermolecular potential defined
by

I, y) =X y) =y Iyx—y) X yeZ (A1)

with ¥~ > 0 being the interaction range addassumed to be eved(r) = J(—r). The
scaling in (A.1) guarantees the summability of the HamiltortgrprovidedJ € L1(RY).
If the microscopic interactions are attractive, i.&.is nonnegative, then we say that the
Ising model is ferromagnetic. In generdl,may include a combination of both attractive
and repulsive interactions.

Equilibrium states of the Ising model are described by the Gibbs states at the prescr
temperaturd’,

1
pa(do) = Z. exp(—pH (o)) do, (A.2)

where 8 = % k being the Boltzmann constanf., is a normalizing constant so that
w is a probability measure defined on the configuration spaee {0, 1}*, whereA is
an expanding (a$A| — oo) finite box on the infinite lattice, with specified boundary
conditions. Itis well known that phase transitions, i.e., nonuniqueness of the Gibbs measi
may occur at low temperatures, in the infinite volume limit [28].

The dynamics of the model consists of a sequence of flips and spin exchanges
correspond to various physical processes. We describe these microscopic mechanis
detail below.

Al.1. Adsorption/Desorption: Spin Flip Mechanism

A spin flip at the sitex is a spontaneous change in the order parameter; 1 is convertec
0 and vice versa. Physically this mechanism describes the desorption of a particle from
surface to the gas phase and conversely the adsorption of a particle from the gas phe
the surface (see Fig. 1).
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If o denotes the configuration prior to a flip xatthen after the flip the configuration
is denoted by *. We assume that a flip occursxtwhen the configuration is, with a
ratec(x, o), i.e., a spin flip occurs at, during ft, t + At], with probability c(x, o)At +
O(At?). Rigorously, the underlying stochastic procéss:-o is a jump Markov process
on L*°(XZ; R) with generator given by

L2 (o) = Y cx.o)[f(0*) = f(o)]. feL¥E:R). (A.3)

xezZN

An obvious requirement on the resulting dynamics is that, when restricted on a finite
mensional boxA, they should leave the Gibbs measure (A.2) invariant. This condition
called adetailed balancdéaw and is equivalent to [29]

c(X, 0) = c(X, aX) exp(—BAxH (0)). (A.4)

HereAxH (o) = H(c*) — H (o) is the energry difference ater performing a spin flip at the
sitex. The simplest type of dynamics satisfying (A.4), referred to as Metropolis-type, is

C(X,0) = V(—BAxH (o)), (A.5)

yielding the relaiton onb, ¥ (r) = W(—r)e ™", r € R. Typical choices oft’'s are¥ (r) =
(1+ €)1 (Glauber dynamics)y(r) = e /2, orw(r) = e (Metropolis dynamics).

Al.2. Surface Diffusion: Spin Exchange Mechanism

A spin exchange between the neigbhoring sitesdy is a spontaneous exchange of the
values of the order parametenaandy. Physically this mechanism describes the diffusior
of a particle on a flat surface (see Fig. 1). Note that sites cannot be occupied by more 1
one patrticle (exclusion principle). As in the spin flip dynamics, a spin exchange occurs w
ratec(x, y, o) satisfying the detailed balance law

c(X, ¥, 0) = c(x,y,a*Y) exp(—BAx.yH(0)), (A.6)

wheres *Y) is the new configuration after a spin exchange between sitsdy. Fur-
thermore Ax yH (o) = H(c™*Y) — H (o) is the energy difference after performing a spin
exchange between the neighboring siteand y. The HamiltonianH associated with
diffusion may have a different intermolecular potentiathan adsorption. The resulting
stochastic procedst }i>o is a jump Markov process do™ (X¥; R) with generator given by

LIf(0) =Y cx.y.0)[f(a™Y) = f(o)]. (A7)

xez®

The Metropolis-type dynamics, which satisfy (A.6), is

W (—BAxyH(0)), whenx andy are nearest neighbors,

. (A.8)
0, otherwise

C(X’ y’ 0) = {

where W(r) = W(—r)e", r ¢ R. Typical choices of¥’s are W(r)=2(1+¢)?!

(Kawasaki dynamics) andf (r) = e (Metropolis dynamics).
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Al1.3. Arrhenius Dynamics for Adsorption/Desorption and Surface Diffusion

In most Monte Carlo simulations, motion of species is performed according to Metropc
or Kawasaki dynamics [1]. For such dynamics, the energy barrier for diffusion depends ¢
on the energy difference between the initial and final states, often known as the heat o
process. Since the equilibrium state of a system s independent of dynamics, different chc
of microscopic dynamics result in the same long time solution due to the detailed bala
condition. However, time-dependent solutions and the time needed to approach equilibt
depend on the details of microscopic dynamics. It is then more natural to describe
activation energy of surface diffusion as the energy barrier a species has to overcon
jumping from one site to another [30, 31]. This activation energy corresponds (omitti
the zero point energy difference for clarity) to the difference between the minimum a
maximum energies shown in Fig. 1b. The adsorption/desorption mechanisms are han
similarly. Such dynamics is termed Arrhenius [9].

The Arrhenius adsorption/desorption (spin flip) rate is given by

{ coexp[-B(Up +U(x)], wheno(x) = 1.
c(X,0) =
Co, wheno (x) = 0.

The Arrhenius surface diffusion (spin exchange) rate is given for nearest neighbnds
y by

Coexp[-B(Uo +U(x))], wheno(x) =1, o(y) =0,
C(X,y,0) =< cexp[-BUo+U(y)], wheno(x) =0, o(y) =1,
0, otherwise,

where in both formulae

Ux) = Z J(X — 2)0(2)
Z#X

is the total energy contribution from the particle interactions with the particle located at t
site x, while Uy is the energy associated with the surface binding of the particldatis

a rate constant that can be chosen arbitrarily). Both spin flip and spin exchange dynat
satisfy the detailed balance law. A more complex dependence of the activation energ
the energetics of adjacent sites is also possible, e.g., Arrhenius parabolic jump models
31].

A2. Mesoscopic Models: Local Mean Field Equations

Here we briefly discuss the derivation of mesoscopic theories for each of the mic
scopic models we introduced above, as well as combinations of such mechanisms. At |
space/time scales and for weak long-range potentials, the small-scale fluctuations o
Ising systems are suppressed and an almost deterministic pattern emerges describ
suitable, possibly stochastic, integrodifferential equations. The passage in the limid
(the interaction range ig~1; see (A.1)), which in the physics literature is identified with
coarse graining, of quantities like the thermodynamic pressure, total coverage, etc., is kn
as the Lebowitz—Penrose limit [32]. Along these lines we study the asymptoties;:a8,
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of the averaged coverage
u,(x,t) = Epor(x), (X,t) € Z% x [0, 00)

of the system, wherd,, denotes the expectation of the IPS starting from a measul
w”. Similarly, one may study the related asymptotic limit of a suitable averaged in spe
occupation

1
| Bxl

v, (X, 1) =

> oy

yeBy

whereB, is a ball centered at with radiusR = y 2 « y 1, wherey ~! is the interaction
range and G< a < 1. Through the scalingR = y 2, the ball B where the averaging is
carried out contains enough points so that the random fluctuations will be suppressed
to the Law of Large Numbers, while at the same time spatial variations in the coverage
captured since the averaging is performed over regions relatively smaller than the interac
range. Thus, ag — 0, u, (X, t) — v, (X, t) convergesto zero; in addition there is a normally
distributed correction t@, (X, t) of order O(y9/?) as in the Central Limit Theorem. We
refer to the review article [33] and references therein for some rigorous results on th
asymptotic limits, while here we present only the formal derivation of the mesoscoy
equations separately for each micromechanism.

A2.1. Adsorption/Desorption: Spin Flip Mechanism

The generator (A.3) yields that the averaged covetggg, t) = E,»ot(X) solves

d

a EHVGt x) = EMV (1 — 201 (X))C(X, o1). (Ag)
When the interparticle potential is weak and long range, the fluctuatioag »faround
their averages are approximately independent, the Law of Large Numbers formally app
and, asy — 0,

Y Ix =201~ > IX—2En0(2). (A.10)
Z#X Z#X

In addition there is a normally distributed correction of or@/%/?) in a d-dimensional
lattice due to the Central Limit Theorem. Here we ignore such random corrections, bu
principle they would give rise to a stochastic PDE instead of a deterministic equation. Bz
in (A.9), we substitute the spin flip rate, and using (A.10) we obtai, as 0, u, (X, t) =
E.ro1(X) = u(yXx, t), andu solves [6] the mesoscopic equations (2.1) or (2.2) as given i
Section 2 for each choice of microscopic dynamics.

A2.2. Surface Diffusion: Spin Exchange Mechanism
As above, the generator (A.7) yields that the averaged covétgage (x) solves

Ewot) = Y Ew(ou(y) — ot())e(X, ¥, 0), (A.11)

d
dt yeN(Xx)
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whereN(x) denotes the nearest neighborxoReasoning as in the adsorption/desorptior
case we also have th@héx J(X — 2)o1(2) ~ ZZ#X J(x — 2)E,»01(2). Rescaling time as
t — ty—2in (A.11) and using the approximate independence of different lattice sites 1
y < 1, we obtain for the dynamics (A.8) that, asvanishesy,, (X, t) = E,» o1, —2(X) =
u(yx,t), andu solves [10] the mesoscopic model equations (2.4) in Section 2. Similar
we can handle the Arrhenius dynamics and obtain (2.5) [9].

When the microscopic fluctuations are retained it can be formally shown that the coa
grained variable’” approximately solves the stochastic mesoscopic equation

W -v. {,u[u’”]v (‘SE[“V] n h)} — 92V . {\/2u[W]W} =0, (A.12)

suv

where the variational derivative and the mobilitiesare defined in Section 2Rl is the
space dimensior is the external fieldy ~* is the interaction radius of the potenti&lin
(A1), andW = (Wl(x, t), ..., Wy(x, 1)) is a d-dimensional space/time white noise.

APPENDIX B: RELATIONSHIP OF MESOSCOPIC MODELS
TO GINZBURG-LANDAU MODELS

In this appendix we briefly discuss the connections of the mesoscopic equations \
well known models for phase separation such as the Allen—Cahn and the Cahn—Hilli
models. If we rescale space as~> X/¢, the potentiald gives rise to the approximation
of the Dirac distributionJ€(x) = e‘dJ(f). Then after a simple change of variables anc
formally expanding in Taylor series,

Jxux) = /J(z)u(x+ez)dz
2
=/J(z) [u(x)+eVu(x)~z+ %ZTVZU(X)Z+ o3 |dz  (B.1)

Ignoring theO(e®) terms and assuming thdtis radially symmetric, i.e.J(r) = J(|r]),
we have that

€2

J€ % u(x) ~ Jou(x) + EJzAu(x), (B.2)

whereJo = [J(r)drandJ, = [ [r[2J(r) dr. Then, for instance, (2.2) is approximated by
a “porous medium” version of the Allen—Cahn equation

U = Duexp(—B Jpu)Au + co[1 — u — exp(—Bh)u exp(—B Jpu)],

whereD = coéﬁ\]o exp(—pBh). Note that, as discussed in Section 2, the functionf (u) =
1—u—exp(—gh)uexp(—BJpu) is bistable or equivalently is the derivative of a double-
well potential when the parameters lie in Region Ill (see Fig. 2). We remind the reader t
the Allen—Cahn equation has the nondimensional form

U = Au+ W'(u),

whereW is the double-well potentialV(u) = (u? — 1) [39].
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In the case of the surface diffusion we can rewrite the free energy (2.6) as
1 ‘ / N2 /
E[u] = 21/ J(r —r)[u(r) —u(H]°drdr +/W,3(u)dr.
W (U) 2 Jou(l — u) + %[u Inu+ (1—u)In(L —u)]. W is a double-well potential pro-
vided B > B. = 4/Jp. Note thatW; is also known in the polymer science literature as

the Flory—Huggins free energy; see for instance [16]. Then, rescaling and expanding
convolution as before, we have that

2
E[u] ~ E[u] ::/L;Z|w|2+wﬁ(u)dr,

after omitting the higher order terms. This is the standard Ginzburg—Landau functional
which case (2.4) becomes a Cahn-Hilliard-type equation

U —V- {,L[u]v<5ﬁ[”] >} —0, (B.3)

Su

with nontrivial mobility .« (u) = Du(1 — u); recall thatin the standard Chan—Hilliard model
w(u) = 1. Similarly, we may simplify the Arrhenius dynamics equation (2.5) which will
have effective mobility.(u) = Du(1 — u) exp(—8 Jou).

The analogies pointed out here between the mesoscopic and the Cahn—Hilliard and Al
Cahn equations hold when the underlying interaction potentials are attractive, as sugge
by the expansions above. However, mesoscopic equations are applicable for any co
nation of attractive and repulsive interactions. Furthermore, as discussed in [55] and
respectively, the truncations in the gradient expansions disregard higher order effect
well as possible anisotropies in the potentialin the vicinity of the critical temperature
and for attractive interactions the Allen—Cahn and Cahn—Hilliard equations become e»
rescaled limits of the mesoscopic models and the underlying particle systems [33]. Moc
similar to (B.2), with or without chemical reaction, have been used in the modeling of phe
separation in polymer blends; see [15, 16, 40] and references therein.
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